Spin injection from a magnetically near-compensated state in GdFeCo and inverse spin Hall effect in electron-hole compensated metal YH2.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Ikuo Yamazaki, Yukihiro Koinuma, Tatsuro Hanajiri, Pham Van Thach, Sina Ranjbar, Satoshi Sumi, Hiroyuki Awano, Osamu Nakamura, Shigehiko Hasegawa, Masamichi Sakai
{"title":"Spin injection from a magnetically near-compensated state in GdFeCo and inverse spin Hall effect in electron-hole compensated metal YH<sub>2</sub>.","authors":"Ikuo Yamazaki, Yukihiro Koinuma, Tatsuro Hanajiri, Pham Van Thach, Sina Ranjbar, Satoshi Sumi, Hiroyuki Awano, Osamu Nakamura, Shigehiko Hasegawa, Masamichi Sakai","doi":"10.1088/1361-648X/ad9371","DOIUrl":null,"url":null,"abstract":"<p><p>Rare-earth-transition-metal (RE-TM) ferrimagnets are excellent materials for spin encode/decode operations via spin transport in nonmagnetic regions. This superior performance stems from two key factors. First, the antiferromagnetic coupling between RE4f and TM3d sublattices reduces both the spin-transfer-torque switching time and inter-device magnetic-coupling. Second, the RE-TM ferrimagnets function as spin injectors/ejectors, with the TM3d sublattice solely responsible for carrier spin polarization (<i>p</i>), similar to conventional ferromagnetic metals. We performed spin transport experiments using the sign change of<i>p</i>in RE-TM, which exhibits a positive value above the magnetization compensation temperature and a negative value below it. We measured temperature dependencies of the transverse resistances (RT) of electron-hole compensated metal YH<sub>2</sub>under out-of-plane spin-polarized current injection/ejection from GdFeCo (Gd:Fe:Co = 25:66:9). The abrupt change in loop polarity of the out-of-plane field dependence ofRTin YH<sub>2</sub>between 290 and 300 K, which aligns with the out-of-field curve of the polar Kerr rotation in GdFeCo electrodes, strongly suggests that the observedRTresults from the inverse spin Hall effect (ISHE) in YH<sub>2</sub>. We analytically formulated ISHE in terms of the electron and hole spin currents injected from the spin sources, enabling regression analysis to assess the spin transport characteristics of a GdFeCo/YH<sub>2</sub>/GdFeCo magnetic double heterostructure. To explain the observed Hall voltages, enhancements in both the spin diffusion length of YH<sub>2</sub>and the spin injection efficiency are necessary.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9371","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Rare-earth-transition-metal (RE-TM) ferrimagnets are excellent materials for spin encode/decode operations via spin transport in nonmagnetic regions. This superior performance stems from two key factors. First, the antiferromagnetic coupling between RE4f and TM3d sublattices reduces both the spin-transfer-torque switching time and inter-device magnetic-coupling. Second, the RE-TM ferrimagnets function as spin injectors/ejectors, with the TM3d sublattice solely responsible for carrier spin polarization (p), similar to conventional ferromagnetic metals. We performed spin transport experiments using the sign change ofpin RE-TM, which exhibits a positive value above the magnetization compensation temperature and a negative value below it. We measured temperature dependencies of the transverse resistances (RT) of electron-hole compensated metal YH2under out-of-plane spin-polarized current injection/ejection from GdFeCo (Gd:Fe:Co = 25:66:9). The abrupt change in loop polarity of the out-of-plane field dependence ofRTin YH2between 290 and 300 K, which aligns with the out-of-field curve of the polar Kerr rotation in GdFeCo electrodes, strongly suggests that the observedRTresults from the inverse spin Hall effect (ISHE) in YH2. We analytically formulated ISHE in terms of the electron and hole spin currents injected from the spin sources, enabling regression analysis to assess the spin transport characteristics of a GdFeCo/YH2/GdFeCo magnetic double heterostructure. To explain the observed Hall voltages, enhancements in both the spin diffusion length of YH2and the spin injection efficiency are necessary.

钆铁钴(GdFeCo)中磁近补偿态的自旋注入以及电子-空穴补偿金属 YH2 中的逆自旋霍尔效应。
稀土过渡金属(RE-TM)铁氧体是通过非磁性区域的自旋传输进行自旋编码/解码操作的绝佳材料。这种优异性能源于两个关键因素。首先,RE4f 和 TM3d 亚晶格之间的反铁磁耦合缩短了自旋传输转矩切换时间,并降低了器件间的磁耦合。其次,RE-TM 铁磁体具有自旋注入器/喷射器的功能,TM3d 亚晶格只负责载流子自旋极化(p),这与传统铁磁金属类似。我们利用 RE-TM 中 p 的符号变化进行了自旋传输实验,p 在磁化补偿温度以上为正值,在磁化补偿温度以下为负值。我们测量了电子-空穴补偿金属 YH2 在 GdFeCo(Gd:Fe:Co=25:66:9)平面外自旋极化电流注入/射出下的横向电阻(RT)的温度依赖性。在 290 至 300 K 之间,YH2 中 RT 的平面外电场依赖性环路极性的突然变化与钆铁钴电极中极性克尔旋转的电场外曲线一致,这有力地表明所观察到的 RT 是 YH2 中反自旋霍尔效应(ISHE)的结果。我们根据从自旋源注入的电子和空穴自旋电流对 ISHE 进行了分析,通过回归分析评估了钆铁钴/YH2/钆铁钴磁性双异质结构的自旋传输特性。为了解释观测到的霍尔电压,YH2 的自旋二注入长度和自旋注入的能力都需要增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信