MCRS1 sensitizes T cell-dependent immunotherapy by augmenting MHC-I expression in solid tumors.

IF 12.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2024-12-02 Epub Date: 2024-11-15 DOI:10.1084/jem.20240959
Xue Li, Han Yi, Zheyu Jin, Kaitao Jiang, Kangkang Xue, Jin Wang, Yuping Qian, Qian Xiang, Sijing Zhu, Runhe Yan, Yulong Yang, Shenfei Sun, Kai Li, Zichu Zhou, Wei Yu, Ning Jiang, Chen Ding, Xinhua Lin, Jiang Zhong, Yuchao Dong, Yanfang Liu, Xiaofei Yu
{"title":"MCRS1 sensitizes T cell-dependent immunotherapy by augmenting MHC-I expression in solid tumors.","authors":"Xue Li, Han Yi, Zheyu Jin, Kaitao Jiang, Kangkang Xue, Jin Wang, Yuping Qian, Qian Xiang, Sijing Zhu, Runhe Yan, Yulong Yang, Shenfei Sun, Kai Li, Zichu Zhou, Wei Yu, Ning Jiang, Chen Ding, Xinhua Lin, Jiang Zhong, Yuchao Dong, Yanfang Liu, Xiaofei Yu","doi":"10.1084/jem.20240959","DOIUrl":null,"url":null,"abstract":"<p><p>Dampened antigen presentation underscores the resistance of pancreatic cancer to T cell-mediated anti-tumor immunity, rendering immunotherapy largely ineffective. By high-throughput CRISPR activation perturbation, we discovered that the transcriptional regulator MCRS1 significantly augmented the sensitivity of mouse pancreatic cancer cells to T cell immunity in vitro and in vivo. Mechanistically, MCRS1 interacted with the transcription factor and genome organizer YY1 to coordinately increase the chromatin accessibility and expression of MHC-I genes. Elevated MCRS1 subverted MHC-I suppression and activated anti-tumor T cells, which sensitized mouse pancreatic cancer to α-PD-1 therapy. Remarkably, high MCRS1 expression was associated with increased T cell infiltration and extended survival of patients with pancreatic cancer and was predictive of favorable responses to α-PD-1 therapy in patients with lung cancer. Together, our study uncovers that MCRS1 sensitizes cancer cells to T cell immunity by transcriptionally subverting MHC-I suppression, which enhances the effectiveness of α-PD-1 therapy in mice and humans, paving the way to further improve immunotherapy against solid tumors.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":null,"pages":null},"PeriodicalIF":12.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240959","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dampened antigen presentation underscores the resistance of pancreatic cancer to T cell-mediated anti-tumor immunity, rendering immunotherapy largely ineffective. By high-throughput CRISPR activation perturbation, we discovered that the transcriptional regulator MCRS1 significantly augmented the sensitivity of mouse pancreatic cancer cells to T cell immunity in vitro and in vivo. Mechanistically, MCRS1 interacted with the transcription factor and genome organizer YY1 to coordinately increase the chromatin accessibility and expression of MHC-I genes. Elevated MCRS1 subverted MHC-I suppression and activated anti-tumor T cells, which sensitized mouse pancreatic cancer to α-PD-1 therapy. Remarkably, high MCRS1 expression was associated with increased T cell infiltration and extended survival of patients with pancreatic cancer and was predictive of favorable responses to α-PD-1 therapy in patients with lung cancer. Together, our study uncovers that MCRS1 sensitizes cancer cells to T cell immunity by transcriptionally subverting MHC-I suppression, which enhances the effectiveness of α-PD-1 therapy in mice and humans, paving the way to further improve immunotherapy against solid tumors.

MCRS1 通过增强实体瘤中 MHC-I 的表达,使依赖 T 细胞的免疫疗法变得敏感。
抗原递呈受阻凸显了胰腺癌对T细胞介导的抗肿瘤免疫的抵抗力,从而使免疫疗法在很大程度上失效。通过高通量CRISPR激活扰乱,我们发现转录调控因子MCRS1在体外和体内显著增强了小鼠胰腺癌细胞对T细胞免疫的敏感性。从机理上讲,MCRS1与转录因子和基因组组织者YY1相互作用,协调地增加了染色质的可及性和MHC-I基因的表达。升高的MCRS1能颠覆MHC-I抑制,激活抗肿瘤T细胞,从而使小鼠胰腺癌对α-PD-1疗法敏感。值得注意的是,MCRS1的高表达与T细胞浸润的增加和胰腺癌患者生存期的延长有关,并可预测肺癌患者对α-PD-1疗法的良好反应。总之,我们的研究发现,MCRS1通过转录颠覆MHC-I抑制,使癌细胞对T细胞免疫敏感,从而提高了α-PD-1疗法在小鼠和人类中的有效性,为进一步改善实体瘤免疫疗法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信