Andang Miatmoko, Syarifah Sutra Dewangga, Kevin Ksatria Handoko, Djoko Legowo, Kusuma Eko Purwantari, Joni Susanto, Arif Nurkanto, Purwati, Dini Retnowati, Margaret Ahmad, Widji Soeratri
{"title":"Transfersomal serum loading amniotic mesenchymal stem cells metabolite products with hyaluronic acid addition for skin regeneration in UV aging-induced mice.","authors":"Andang Miatmoko, Syarifah Sutra Dewangga, Kevin Ksatria Handoko, Djoko Legowo, Kusuma Eko Purwantari, Joni Susanto, Arif Nurkanto, Purwati, Dini Retnowati, Margaret Ahmad, Widji Soeratri","doi":"10.1016/j.ijpharm.2024.124950","DOIUrl":null,"url":null,"abstract":"<p><p>Amniotic Mesenchymal Stem Cells Metabolite Products (AMSC-MP) contain growth factors that benefit human health. This study aims to evaluate the use of transfersomal serum (Trans) with hyaluronic acid (HA) addition to deliver large molecules of AMSC-MP for skin regeneration. Trans is composed of L-α-phosphatidylcholine and surfactants, i.e., sodium cholate (SC) or stearylamine (SA), at the weight ratio of 85:15, prepared by the thin film method with or without HA addition. The results showed that HA addition increased the particle size of Trans-SA and Trans-SC, from 261.9 ± 1.9 and 105.3 ± 0.9 nm respectively, to 317.7 ± 9.1 and 144.3 ± 0.8 nm for Trans-SA-HA and Trans-SC-HA. In contrast, no significant changes in the zeta potential occurred. The relative deformability indexes of Trans-SA, Trans-SA-HA, Trans-SC, and Trans-SC-HA compared to liposome were 0.43 ± 0.09, 0.46 ± 0.09, 1.58 ± 0.17, and 1.40 ± 0.17 respectively. The addition of HA successfully increases the in vivo skin hydration, collagen density, and number of fibroblast cells, reflecting the capacity for skin regeneration in UV-induced aged mice. Furthermore, no erythema or skin rash was observed at the 24-hour post-topical application sites. AMSC-MP transfersomal serum with HA addition successfully enhanced skin regeneration and proved safe during the in vivo study using UV aging-induced mice models, thereby enabling its potential use as skin-aging therapy.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"124950"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.124950","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Amniotic Mesenchymal Stem Cells Metabolite Products (AMSC-MP) contain growth factors that benefit human health. This study aims to evaluate the use of transfersomal serum (Trans) with hyaluronic acid (HA) addition to deliver large molecules of AMSC-MP for skin regeneration. Trans is composed of L-α-phosphatidylcholine and surfactants, i.e., sodium cholate (SC) or stearylamine (SA), at the weight ratio of 85:15, prepared by the thin film method with or without HA addition. The results showed that HA addition increased the particle size of Trans-SA and Trans-SC, from 261.9 ± 1.9 and 105.3 ± 0.9 nm respectively, to 317.7 ± 9.1 and 144.3 ± 0.8 nm for Trans-SA-HA and Trans-SC-HA. In contrast, no significant changes in the zeta potential occurred. The relative deformability indexes of Trans-SA, Trans-SA-HA, Trans-SC, and Trans-SC-HA compared to liposome were 0.43 ± 0.09, 0.46 ± 0.09, 1.58 ± 0.17, and 1.40 ± 0.17 respectively. The addition of HA successfully increases the in vivo skin hydration, collagen density, and number of fibroblast cells, reflecting the capacity for skin regeneration in UV-induced aged mice. Furthermore, no erythema or skin rash was observed at the 24-hour post-topical application sites. AMSC-MP transfersomal serum with HA addition successfully enhanced skin regeneration and proved safe during the in vivo study using UV aging-induced mice models, thereby enabling its potential use as skin-aging therapy.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.