Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yuru Shen, Bin Zhong, Wanwei Zheng, Dan Wang, Lin Chen, Huan Song, Xuanxuan Pan, Shaocong Mo, Bryan Jin, Haoshu Cui, Huaxing Zhan, Feifei Luo, Jie Liu
{"title":"Rg3-lipo biomimetic delivery of paclitaxel enhances targeting of tumors and myeloid-derived suppressor cells.","authors":"Yuru Shen, Bin Zhong, Wanwei Zheng, Dan Wang, Lin Chen, Huan Song, Xuanxuan Pan, Shaocong Mo, Bryan Jin, Haoshu Cui, Huaxing Zhan, Feifei Luo, Jie Liu","doi":"10.1172/JCI178617","DOIUrl":null,"url":null,"abstract":"<p><p>Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety-enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo's antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo's dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo's druggability will be conducted in clinical trials.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 22","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI178617","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Liposomal drug delivery systems have revolutionized traditional cytotoxic drugs. However, the relative instability and toxicity of the existing liposomal drug delivery systems compromised their efficacy. Herein, we present Rg3-lipo, an innovative drug delivery system using a glycosyl moiety-enriched ginsenoside (Rg3). This system is distinguished by its glycosyl moieties exposed on the liposomal surface. These moieties imitate human cell membranes to stabilize and evade phagocytic clearance. The Rg3-lipo system loaded with paclitaxel (PTX-Rg3-lipo) demonstrated favorable bioavailability and safety in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys. With its glycosyl moieties recognizing tumor cells via the glucose transporter Glut1, PTX-Rg3-lipo inhibited gastric, breast, and esophageal cancers in human cancer cell lines, tumor-bearing mice, and patient-derived xenograft models. These glycosyl moieties selectively targeted myeloid-derived suppressor cells (MDSCs) through the glucose transporter Glut3 to attenuate their immunosuppressive effect. The mechanism study revealed that Rg3-lipo suppressed glycolysis and downregulated the transcription factors c-Maf and Mafb overcoming the MDSC-mediated immunosuppressive microenvironment and enhancing PTX-Rg3-lipo's antitumor effect. Taken together, we supply substantial evidence for its advantageous bioavailability and safety in multiple animal models, including nonhuman primates, and Rg3-lipo's dual targeting of cancer cells and MDSCs. Further investigation regarding Rg3-lipo's druggability will be conducted in clinical trials.

Rg3-lipo 紫杉醇生物仿生递送增强了对肿瘤和髓源性抑制细胞的靶向性。
脂质体给药系统彻底改变了传统的细胞毒性药物。然而,现有脂质体给药系统的相对不稳定性和毒性影响了其药效。在此,我们介绍一种使用富含糖基分子的人参皂甙(Rg3)的创新型给药系统 Rg3-lipo。该系统的特点是其糖基分子暴露在脂质体表面。这些分子模仿人类细胞膜,以稳定和逃避吞噬细胞的清除。装载紫杉醇的 Rg3-lipo 系统(PTX-Rg3-lipo)在 Sprague-Dawley 大鼠、小猎犬和金丝猴体内表现出良好的生物利用度和安全性。PTX-Rg3-lipo 的糖基分子可通过葡萄糖转运体 Glut1 识别肿瘤细胞,从而抑制人类癌症细胞系、肿瘤小鼠和患者异种移植模型中的胃癌、乳腺癌和食道癌。这些糖基分子通过葡萄糖转运体 Glut3 选择性地靶向髓源性抑制细胞(MDSCs),以削弱其免疫抑制作用。机理研究显示,Rg3-lipo 可抑制糖酵解并下调转录因子 c-Maf 和 Mafb,从而克服 MDSC 介导的免疫抑制微环境,增强 PTX-Rg3-lipo 的抗肿瘤效果。综上所述,我们提供了大量证据,证明 Rg3-lipo 在包括非人灵长类动物在内的多种动物模型中具有良好的生物利用度和安全性,以及它对癌细胞和 MDSC 的双重靶向作用。我们将在临床试验中进一步研究 Rg3-lipo 的可药用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信