Susan Zelasko, Mary Hannah Swaney, Shelby Sandstrom, Kristine E Lee, Jonah Dixon, Colleen Riley, Lauren Watson, Jared J Godfrey, Naomi Ledrowski, Federico Rey, Nasia Safdar, Christine M Seroogy, James E Gern, Lindsay Kalan, Cameron Currie
{"title":"Early-life Upper Airway Microbiota are Associated with Decreased Lower Respiratory Tract Infections.","authors":"Susan Zelasko, Mary Hannah Swaney, Shelby Sandstrom, Kristine E Lee, Jonah Dixon, Colleen Riley, Lauren Watson, Jared J Godfrey, Naomi Ledrowski, Federico Rey, Nasia Safdar, Christine M Seroogy, James E Gern, Lindsay Kalan, Cameron Currie","doi":"10.1016/j.jaci.2024.11.008","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial interactions mediating colonization resistance play key roles within the human microbiome, shaping susceptibility to infection from birth. To gain insight into microbiome-mediated defenses and respiratory pathogen colonization dynamics, we sequenced and analyzed nasal (n=229) and oral (n=210) microbiomes with associated health/environmental data from our Wisconsin Infant Study Cohort at age 24-months. Participants with early-life lower respiratory tract infection (LRTI) were more likely to be formula-fed, attend daycare, and experience wheezing. Shotgun metagenomic sequencing with detection of viral and bacterial respiratory pathogens revealed nasal microbiome composition to associate with prior LRTI - namely lower alpha diversity, depletion of Prevotella, and enrichment of Moraxella catarrhalis including drug-resistant strains. Prevotella originating from healthy microbiomes had higher biosynthetic gene cluster abundance and exhibited contact-independent inhibition of M. catarrhalis, suggesting interbacterial competition impacts nasal pathogen colonization. This work advances understanding of protective host-microbial interactions occurring in airway microbiomes that alter infection susceptibility in early-life.</p>","PeriodicalId":14936,"journal":{"name":"Journal of Allergy and Clinical Immunology","volume":" ","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jaci.2024.11.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial interactions mediating colonization resistance play key roles within the human microbiome, shaping susceptibility to infection from birth. To gain insight into microbiome-mediated defenses and respiratory pathogen colonization dynamics, we sequenced and analyzed nasal (n=229) and oral (n=210) microbiomes with associated health/environmental data from our Wisconsin Infant Study Cohort at age 24-months. Participants with early-life lower respiratory tract infection (LRTI) were more likely to be formula-fed, attend daycare, and experience wheezing. Shotgun metagenomic sequencing with detection of viral and bacterial respiratory pathogens revealed nasal microbiome composition to associate with prior LRTI - namely lower alpha diversity, depletion of Prevotella, and enrichment of Moraxella catarrhalis including drug-resistant strains. Prevotella originating from healthy microbiomes had higher biosynthetic gene cluster abundance and exhibited contact-independent inhibition of M. catarrhalis, suggesting interbacterial competition impacts nasal pathogen colonization. This work advances understanding of protective host-microbial interactions occurring in airway microbiomes that alter infection susceptibility in early-life.
期刊介绍:
The Journal of Allergy and Clinical Immunology is a prestigious publication that features groundbreaking research in the fields of Allergy, Asthma, and Immunology. This influential journal publishes high-impact research papers that explore various topics, including asthma, food allergy, allergic rhinitis, atopic dermatitis, primary immune deficiencies, occupational and environmental allergy, and other allergic and immunologic diseases. The articles not only report on clinical trials and mechanistic studies but also provide insights into novel therapies, underlying mechanisms, and important discoveries that contribute to our understanding of these diseases. By sharing this valuable information, the journal aims to enhance the diagnosis and management of patients in the future.