{"title":"The establishment of the anther somatic niche with single-cell sequencing","authors":"D. Blaine Marchant , Virginia Walbot","doi":"10.1016/j.ydbio.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate <em>de novo</em> from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops. Understanding the genes that underlie the proper differentiation, developmental landmarks, and functions of each anther cell type is thus fundamental to both basic and applied plant sciences. We investigated the development of the somatic niche of the maize (<em>Zea mays</em>) anther using single-cell RNA-seq (scRNA-seq). Extensive background knowledge on the birth then pace and pattern of cell division of the maize anther cell types and published examples of cell-type gene expression from <em>in situ</em> hybridization allowed us to identify the primary cell types within the anther lobe, as well as the connective cells between the four lobes. We established the developmental trajectories of somatic cell types from pre-meiosis to post-meiosis, identified putative marker genes for the somatic cell types that previously lacked any known specific functions, and addressed the possibility that tapetal cells sequentially differentiate. This comprehensive scRNA-seq dataset of the somatic niche of the maize anther will serve as a baseline for future analyses investigating male-sterile genotypes and the impact of environmental conditions on male fertility in flowering plants.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"518 ","pages":"Pages 37-47"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002562","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The anther is the developmental housing of pollen and therefore the male gametes of flowering plants. The meiotic cells from which pollen are derived must differentiate de novo from somatic anther cells and synchronously develop with the rest of the anther. Anthropogenic control over another development has become crucial for global agriculture so as to maintain inbred lines and generate hybrid seeds of many crops. Understanding the genes that underlie the proper differentiation, developmental landmarks, and functions of each anther cell type is thus fundamental to both basic and applied plant sciences. We investigated the development of the somatic niche of the maize (Zea mays) anther using single-cell RNA-seq (scRNA-seq). Extensive background knowledge on the birth then pace and pattern of cell division of the maize anther cell types and published examples of cell-type gene expression from in situ hybridization allowed us to identify the primary cell types within the anther lobe, as well as the connective cells between the four lobes. We established the developmental trajectories of somatic cell types from pre-meiosis to post-meiosis, identified putative marker genes for the somatic cell types that previously lacked any known specific functions, and addressed the possibility that tapetal cells sequentially differentiate. This comprehensive scRNA-seq dataset of the somatic niche of the maize anther will serve as a baseline for future analyses investigating male-sterile genotypes and the impact of environmental conditions on male fertility in flowering plants.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.