A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity.

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Ricardo J Samms, Christine M Kusminski
{"title":"A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity.","authors":"Ricardo J Samms, Christine M Kusminski","doi":"10.1146/annurev-physiol-022724-105443","DOIUrl":null,"url":null,"abstract":"<p><p>Driven by increased caloric intake relative to expenditure, obesity is a major health concern placing economic and operational strain on healthcare and social care worldwide. Pharmacologically, one of the most effective avenues for the management of excess adiposity is the suppression of appetite. However, owing to the body's natural physiological defense to weight loss and tolerability issues that typically accompany anorectic agents, leveraging this approach to induce sustained weight loss is often easier said than done. As such, to address these challenges, researchers have coupled a thorough understanding of the gut-brain axis with advancements in peptide engineering to design therapeutics mimicking the actions of endocrine hormones to promote a negative energy balance. Indeed, multireceptor agonists targeting the GLP-1, GIP, and glucagon receptors produce meaningful weight loss in people with obesity. Herein, we provide a rationale for how activation of the GIP receptor in the brain and the glucagon receptor in the liver and adipose tissue functions to synergize with GLP-1 receptor agonism to curb the drive to feed and ignite the combustion of excess calories for providing next-generation weight loss.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022724-105443","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by increased caloric intake relative to expenditure, obesity is a major health concern placing economic and operational strain on healthcare and social care worldwide. Pharmacologically, one of the most effective avenues for the management of excess adiposity is the suppression of appetite. However, owing to the body's natural physiological defense to weight loss and tolerability issues that typically accompany anorectic agents, leveraging this approach to induce sustained weight loss is often easier said than done. As such, to address these challenges, researchers have coupled a thorough understanding of the gut-brain axis with advancements in peptide engineering to design therapeutics mimicking the actions of endocrine hormones to promote a negative energy balance. Indeed, multireceptor agonists targeting the GLP-1, GIP, and glucagon receptors produce meaningful weight loss in people with obesity. Herein, we provide a rationale for how activation of the GIP receptor in the brain and the glucagon receptor in the liver and adipose tissue functions to synergize with GLP-1 receptor agonism to curb the drive to feed and ignite the combustion of excess calories for providing next-generation weight loss.

基于胰岛素的肥胖症治疗方法的机制原理。
由于摄入的热量相对于支出有所增加,肥胖症已成为一个主要的健康问题,给全世界的医疗保健和社会服务带来了经济和运营压力。从药理上讲,抑制食欲是控制过多脂肪最有效的途径之一。然而,由于人体对体重减轻的自然生理防御以及抑制食欲药物通常伴随的耐受性问题,利用这种方法诱导持续的体重减轻往往说起来容易做起来难。因此,为了应对这些挑战,研究人员将对肠道-大脑轴的透彻了解与肽工程学的进步相结合,设计出模仿内分泌激素作用的治疗药物,以促进能量负平衡。事实上,针对 GLP-1、GIP 和胰高血糖素受体的多受体激动剂能使肥胖症患者的体重明显减轻。在此,我们提供了一个原理,说明激活大脑中的 GIP 受体以及肝脏和脂肪组织中的胰高血糖素受体如何与 GLP-1 受体激动剂协同作用,抑制进食动力并燃烧多余热量,从而实现新一代减肥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信