Krista M Thomas, Elliott J Wright, Daniel G Beach, Pearse McCarron
{"title":"Multi–class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography–mass spectrometry","authors":"Krista M Thomas, Elliott J Wright, Daniel G Beach, Pearse McCarron","doi":"10.1016/j.chroma.2024.465483","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanobacteria produce diverse classes of toxins including microcystins, nodularins, anatoxins, cylindrospermopsins and saxitoxins, encompassing a range of chemical properties and mechanisms of toxicity. Comprehensive analysis of these toxins in cyanobacterial, environmental and biological samples generally requires multiple methods of extraction and analysis.</div><div>In this work, a method was developed for the major classes of cyanotoxins, which comprised of a three-step liquid-solid extraction method using 75 % CH<sub>3</sub>CN with 0.1 % HCOOH and a hydrophilic interaction liquid chromatography (HILIC) elution gradient that provided retention of the less polar microcystins through to the highly polar saxitoxins. Detection was performed by tandem mass spectrometry in selected reaction monitoring mode with positive and negative polarity switching. Identification criteria included matching retention times and product ion ratios with available standards. In-house validation demonstrated good performance of the method including precision ranging from 1.5 (microcystin-LA) to 5.8 (gonyautoxin-2) % RSDs, and detection limits ranging from 0.01 (cylindrospermopsin) to 0.99 (gonyautoxin-3) µg/g in freeze dried material cyanobacteria. Recovery was assessed using spiked non-toxic cyanobacterial samples (<em>Aphanizomenon</em> sp.) and ranged from 83 (neosaxitoxin) to 107 % ([Dha<sup>7</sup>]microcystin-LR).</div><div>As a demonstration of application, toxin profiles in cyanobacterial cultures, benthic and planktonic cyanobacteria field samples, and shellfish reference materials were successfully evaluated. The procedure is also amenable for extension to other polar toxin classes including domoic acid and guanitoxin. With increasing reports of cyanobacterial blooms globally, the method represents a powerful quantitative screening tool for measuring cyanotoxins across a broad range of samples.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1738 ","pages":"Article 465483"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008574","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria produce diverse classes of toxins including microcystins, nodularins, anatoxins, cylindrospermopsins and saxitoxins, encompassing a range of chemical properties and mechanisms of toxicity. Comprehensive analysis of these toxins in cyanobacterial, environmental and biological samples generally requires multiple methods of extraction and analysis.
In this work, a method was developed for the major classes of cyanotoxins, which comprised of a three-step liquid-solid extraction method using 75 % CH3CN with 0.1 % HCOOH and a hydrophilic interaction liquid chromatography (HILIC) elution gradient that provided retention of the less polar microcystins through to the highly polar saxitoxins. Detection was performed by tandem mass spectrometry in selected reaction monitoring mode with positive and negative polarity switching. Identification criteria included matching retention times and product ion ratios with available standards. In-house validation demonstrated good performance of the method including precision ranging from 1.5 (microcystin-LA) to 5.8 (gonyautoxin-2) % RSDs, and detection limits ranging from 0.01 (cylindrospermopsin) to 0.99 (gonyautoxin-3) µg/g in freeze dried material cyanobacteria. Recovery was assessed using spiked non-toxic cyanobacterial samples (Aphanizomenon sp.) and ranged from 83 (neosaxitoxin) to 107 % ([Dha7]microcystin-LR).
As a demonstration of application, toxin profiles in cyanobacterial cultures, benthic and planktonic cyanobacteria field samples, and shellfish reference materials were successfully evaluated. The procedure is also amenable for extension to other polar toxin classes including domoic acid and guanitoxin. With increasing reports of cyanobacterial blooms globally, the method represents a powerful quantitative screening tool for measuring cyanotoxins across a broad range of samples.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.