{"title":"The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals.","authors":"Huan Wang, Lukuan Guo, Mingfeng Wu, Guang Chu, Wenyuan Zhu, Junlong Song, Jiaqi Guo","doi":"10.1021/acs.biomac.4c01277","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"8006-8015"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01277","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose nanocrystals (CNC) have been significantly developed as a building block material for the design of novel functional materials in many fields such as biomedicine, nanotechnology, and materials science due to their excellent optical properties, biocompatibility, and sustainability. Improving the redispersibility of CNC in the sustainable processing of nanocellulose has been a challenge because intense hydrogen bond interaction leads to irreversible aggregation, making CNC difficult to redisperse and increasing the cost of storage and transportation of CNC. Hydroxypropyl cellulose (HPC) is an important hydroxy propylated cellulose ether. As a water-soluble cellulose derivative, HPC has a polyhydroxy structure similar to that of CNC, which leads to good compatibility and high affinity between HPC and CNC. In this work, HPC of different molecular weights was comixed with CNC of different contents, which was then dried using different methods, and the dried samples were redispersed in water. The addition of HPC improved the redispersibility of the CNC. Finally, the redispersed suspension was also redried to form a film, which was found to retain its structure color. These results provide an important avenue for the redispersion of dried CNC and for the development of functional materials from redispersed CNC.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.