The Photocleavable Protein PhoCl-Based Dynamic Hydrogels.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jingqi Lei, Hongbin Li
{"title":"The Photocleavable Protein PhoCl-Based Dynamic Hydrogels.","authors":"Jingqi Lei, Hongbin Li","doi":"10.1021/acsbiomaterials.4c01584","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic protein hydrogels have attracted increasing attention owing to their tunable physiochemical and mechanical properties, customized functionality, and biocompatibility. Among the different types of dynamic hydrogels, photoresponsive hydrogels are of particular interest. Here, we report the engineering of a photoresponsive protein hydrogel by using the photocleavable protein PhoCl. We employed the well-developed SpyTag and SpyCatcher chemistry to engineer PhoCl-containing covalently cross-linked hydrogels. In the hydrogel network, PhoCl, which can be cleaved into two fragments upon violet irradiation, is employed as a dynamic structural motif to regulate the cross-linking density of the hydrogel network. The resultant PhoCl-containing hydrogels showed photoresponsive viscoelastic properties. Upon violet irradiation, the PhoCl hydrogels soften, leading to an irreversible reduction in the storage moduli. However, no gel-sol transition was observed. Leveraging this light-induced stiffness change, we employed this hydrogel as a cell culture substrate to investigate the mechanobiological response of NIH-3T3 fibroblast cells. Our results showed that 3T3 cells can change their morphologies in response to the stiffness change of the PhoCl hydrogel substrate dynamically, rendering PhoCl-based hydrogels a useful substrate for other mechanobiological studies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01584","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic protein hydrogels have attracted increasing attention owing to their tunable physiochemical and mechanical properties, customized functionality, and biocompatibility. Among the different types of dynamic hydrogels, photoresponsive hydrogels are of particular interest. Here, we report the engineering of a photoresponsive protein hydrogel by using the photocleavable protein PhoCl. We employed the well-developed SpyTag and SpyCatcher chemistry to engineer PhoCl-containing covalently cross-linked hydrogels. In the hydrogel network, PhoCl, which can be cleaved into two fragments upon violet irradiation, is employed as a dynamic structural motif to regulate the cross-linking density of the hydrogel network. The resultant PhoCl-containing hydrogels showed photoresponsive viscoelastic properties. Upon violet irradiation, the PhoCl hydrogels soften, leading to an irreversible reduction in the storage moduli. However, no gel-sol transition was observed. Leveraging this light-induced stiffness change, we employed this hydrogel as a cell culture substrate to investigate the mechanobiological response of NIH-3T3 fibroblast cells. Our results showed that 3T3 cells can change their morphologies in response to the stiffness change of the PhoCl hydrogel substrate dynamically, rendering PhoCl-based hydrogels a useful substrate for other mechanobiological studies.

基于 PhoCl 的光可溶解蛋白质动态水凝胶。
动态蛋白质水凝胶具有可调的物理化学和机械特性、定制功能和生物相容性,因此越来越受到人们的关注。在不同类型的动态水凝胶中,光致伸缩性水凝胶尤其引人关注。在此,我们报告了利用光可溶解蛋白质 PhoCl 设计光致伸缩性蛋白质水凝胶的情况。我们采用成熟的 SpyTag 和 SpyCatcher 化学方法来设计含共价交联的 PhoCl 水凝胶。在水凝胶网络中,PhoCl 在紫光照射下可裂解为两个片段,它被用作动态结构母题来调节水凝胶网络的交联密度。由此产生的含 PhoCl 的水凝胶具有光致伸缩粘弹性能。在紫光照射下,PhoCl 水凝胶软化,导致储存模量不可逆转地降低。不过,没有观察到凝胶-溶胶转变。利用光诱导的硬度变化,我们将这种水凝胶用作细胞培养基质,研究 NIH-3T3 成纤维细胞的机械生物学反应。我们的研究结果表明,3T3 细胞可以根据 PhoCl 水凝胶基底的硬度变化动态地改变其形态,从而使 PhoCl 水凝胶成为其他机械生物学研究的有用基底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信