Selenium mitigated cadmium-induced ovarian retardation in female Procambarus clarkii by regulating vitellogenin synthesis and transfer in the hepatopancreas
Huijun Yang , Yifan Yang , Aijie Mo , Yongchao Yuan
{"title":"Selenium mitigated cadmium-induced ovarian retardation in female Procambarus clarkii by regulating vitellogenin synthesis and transfer in the hepatopancreas","authors":"Huijun Yang , Yifan Yang , Aijie Mo , Yongchao Yuan","doi":"10.1016/j.ecoenv.2024.117339","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is prevalent in aquatic ecosystems and accumulates in various tissues of aquatic organisms, leading to severe biological toxicity. Selenium (Se) is recognized for mitigating heavy metal toxicity, though its protective effects against Cd in aquatic crustaceans remain underexplored. This study, therefore, assessed the effects of dietary Cd (15 mg/kg) exposure and Se (6 mg/kg) supplementation on the hepatopancreas and ovaries of female crayfish to uncover the mechanisms of Cd toxicity and the protective role of Se. The results showed that Cd accumulation in the hepatopancreas caused a reduced hepatopancreas index (HPI), decreased protein content, histopathological damage, and oxidative stress, while Se supplementation reduced Cd levels, mitigated damage, and restored tissue integrity and antioxidant defenses. Transcriptomic analysis further revealed significant alterations in gene expression related to detoxification, lipid metabolism, and energy production in response to Cd exposure, which were partially or fully restored by Se supplementation. Additionally, Se alleviated Cd-induced inhibition of ovarian development, as evidenced by improved ovary index, enhanced oocyte development, and normalization of essential trace element levels. Mechanistically, Se restored the Cd-disrupted vitellogenin (Vtg) synthesis in the hepatopancreas via regulating the mRNA expression of <em>hsp70</em> and genes related to the molt-inhibiting hormone (MIH) (<em>mih</em>, <em>rxr</em>, and <em>ecr</em>). Overall, these findings indicate that Se supplementation mitigated Cd-induced hepatopancreatic dysfunction, restored Vtg synthesis, and consequently counteracted the inhibition of ovarian development in adult female crayfish.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"288 ","pages":"Article 117339"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324014155","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is prevalent in aquatic ecosystems and accumulates in various tissues of aquatic organisms, leading to severe biological toxicity. Selenium (Se) is recognized for mitigating heavy metal toxicity, though its protective effects against Cd in aquatic crustaceans remain underexplored. This study, therefore, assessed the effects of dietary Cd (15 mg/kg) exposure and Se (6 mg/kg) supplementation on the hepatopancreas and ovaries of female crayfish to uncover the mechanisms of Cd toxicity and the protective role of Se. The results showed that Cd accumulation in the hepatopancreas caused a reduced hepatopancreas index (HPI), decreased protein content, histopathological damage, and oxidative stress, while Se supplementation reduced Cd levels, mitigated damage, and restored tissue integrity and antioxidant defenses. Transcriptomic analysis further revealed significant alterations in gene expression related to detoxification, lipid metabolism, and energy production in response to Cd exposure, which were partially or fully restored by Se supplementation. Additionally, Se alleviated Cd-induced inhibition of ovarian development, as evidenced by improved ovary index, enhanced oocyte development, and normalization of essential trace element levels. Mechanistically, Se restored the Cd-disrupted vitellogenin (Vtg) synthesis in the hepatopancreas via regulating the mRNA expression of hsp70 and genes related to the molt-inhibiting hormone (MIH) (mih, rxr, and ecr). Overall, these findings indicate that Se supplementation mitigated Cd-induced hepatopancreatic dysfunction, restored Vtg synthesis, and consequently counteracted the inhibition of ovarian development in adult female crayfish.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.