Xudan Zhu, Frank Berninger, Liang Chen, Johannes Larson, Ryan A. Sponseller, Hjalmar Laudon
{"title":"Several Mechanisms Drive the Heterogeneity in Browning Across a Boreal Stream Network","authors":"Xudan Zhu, Frank Berninger, Liang Chen, Johannes Larson, Ryan A. Sponseller, Hjalmar Laudon","doi":"10.1029/2023wr036802","DOIUrl":null,"url":null,"abstract":"Over the past few decades, many catchments in Northern hemisphere have experienced increases in dissolved organic carbon (DOC) concentrations, resulting in a brownish color of the water, known as aquatic browning. Several mechanisms have been proposed to explain browning, but consensus regarding the relative importance of recovery from acid deposition, climate change, and land management remains elusive. To advance our understanding of browning mechanisms, we explored DOC trends across 13 nested boreal catchments, leveraging concurrent hydrological, chemical, and terrestrial ecosystem data to quantify the contributions of different drivers on observed trends. We first identified the related environmental factors, then attributed the individual trends of DOC to potential drivers across space and time. Our results showed that all catchments exhibited increased DOC trends from 2003 to 2021, but the DOC response rates differed by five-fold. No single mechanism could fully explain the browning; instead, sulfate deposition, climate-related factors, and site properties jointly controlled the variation in DOC trends. Specifically, the long-term increases in DOC were primarily driven by recovery from sulfate deposition, followed by increases in terrestrial productivity, temperature, and discharge. However, catchment area and landcover type also regulated the response rate of DOC to these drivers, creating spatial heterogeneity in browning among sub-catchments despite similar deposition and climate forcing. Interestingly, browning has weakened in the last decade as sulfate deposition has fully recovered and other current drivers are insufficient to sustain the long-term increases. Our results highlight that multifaceted, spatially structured, and nonstationary drivers must be accounted for to predict future DOC changes.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"64 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036802","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few decades, many catchments in Northern hemisphere have experienced increases in dissolved organic carbon (DOC) concentrations, resulting in a brownish color of the water, known as aquatic browning. Several mechanisms have been proposed to explain browning, but consensus regarding the relative importance of recovery from acid deposition, climate change, and land management remains elusive. To advance our understanding of browning mechanisms, we explored DOC trends across 13 nested boreal catchments, leveraging concurrent hydrological, chemical, and terrestrial ecosystem data to quantify the contributions of different drivers on observed trends. We first identified the related environmental factors, then attributed the individual trends of DOC to potential drivers across space and time. Our results showed that all catchments exhibited increased DOC trends from 2003 to 2021, but the DOC response rates differed by five-fold. No single mechanism could fully explain the browning; instead, sulfate deposition, climate-related factors, and site properties jointly controlled the variation in DOC trends. Specifically, the long-term increases in DOC were primarily driven by recovery from sulfate deposition, followed by increases in terrestrial productivity, temperature, and discharge. However, catchment area and landcover type also regulated the response rate of DOC to these drivers, creating spatial heterogeneity in browning among sub-catchments despite similar deposition and climate forcing. Interestingly, browning has weakened in the last decade as sulfate deposition has fully recovered and other current drivers are insufficient to sustain the long-term increases. Our results highlight that multifaceted, spatially structured, and nonstationary drivers must be accounted for to predict future DOC changes.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.