Min Fan, Jingbo Chen, Xiaomeng Zheng, Luyun Xu, Jianqin Ye, Xueliang Lin, Kien Voon Kong, Duo Lin, Yudong Lu, Shangyuan Feng
{"title":"Precise Genotyping Via Surface-Enhanced Raman Spectroscopy-Based Optical Sensing Chip for Guiding Targeted Therapy in Lung Cancer","authors":"Min Fan, Jingbo Chen, Xiaomeng Zheng, Luyun Xu, Jianqin Ye, Xueliang Lin, Kien Voon Kong, Duo Lin, Yudong Lu, Shangyuan Feng","doi":"10.1002/lpor.202401400","DOIUrl":null,"url":null,"abstract":"The emergence of “precision medicine” marks a notable shift in cancer treatment, moving from a tumor type–oriented approach to a more targeted, gene-oriented approach. Detecting low-abundance mutant genes in blood is challenging but crucial for personalized treatment plans. Herein, a novel platform combining catalytic hairpin self-assembly (CHA)-mediated self-calibrating surface-enhanced Raman spectroscopy (SERS) with a high-throughput Raman system (CCSPS) was designed. This platform enables ultrasensitive and rapid genotype analysis of gene mutations. The development of CCSPS specifically targets <i>EGFR</i> mutations, which serve as crucial therapeutic targets for precision therapy in lung cancer. This system shows excellent sensitivity and selectivity, capable of detecting multiple <i>EGFR</i> mutations (<i>Del-19</i>, <i>L858R</i>, and <i>T790M</i>) with a detection limit as low as attomolar levels. Additionally, precise genotyping analysis was successfully conducted on 42 clinical samples using the CCSPS, yielding results consistent with those obtained through next-generation sequencing. These results underscore the efficacy of the CCSPS in noninvasively identifying circulating tumor DNA (ctDNA) mutations, facilitating immediate therapeutic decision making at the bedside. In summary, the CCSPS is a fast, accurate, versatile, and compact testing system capable of precisely screening individuals who stand to benefit from targeted therapy, thus promoting personalized and precise healthcare.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"1 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401400","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of “precision medicine” marks a notable shift in cancer treatment, moving from a tumor type–oriented approach to a more targeted, gene-oriented approach. Detecting low-abundance mutant genes in blood is challenging but crucial for personalized treatment plans. Herein, a novel platform combining catalytic hairpin self-assembly (CHA)-mediated self-calibrating surface-enhanced Raman spectroscopy (SERS) with a high-throughput Raman system (CCSPS) was designed. This platform enables ultrasensitive and rapid genotype analysis of gene mutations. The development of CCSPS specifically targets EGFR mutations, which serve as crucial therapeutic targets for precision therapy in lung cancer. This system shows excellent sensitivity and selectivity, capable of detecting multiple EGFR mutations (Del-19, L858R, and T790M) with a detection limit as low as attomolar levels. Additionally, precise genotyping analysis was successfully conducted on 42 clinical samples using the CCSPS, yielding results consistent with those obtained through next-generation sequencing. These results underscore the efficacy of the CCSPS in noninvasively identifying circulating tumor DNA (ctDNA) mutations, facilitating immediate therapeutic decision making at the bedside. In summary, the CCSPS is a fast, accurate, versatile, and compact testing system capable of precisely screening individuals who stand to benefit from targeted therapy, thus promoting personalized and precise healthcare.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.