A review of enhanced adsorption removal of odor contaminants with low ppm concentration levels: the key to technological breakthrough as well as challenges
Wenying Li, Jianing Lv, Yang Yue, Yao Wang, Jia Zhang, Guangren Qian
{"title":"A review of enhanced adsorption removal of odor contaminants with low ppm concentration levels: the key to technological breakthrough as well as challenges","authors":"Wenying Li, Jianing Lv, Yang Yue, Yao Wang, Jia Zhang, Guangren Qian","doi":"10.1016/j.jhazmat.2024.136512","DOIUrl":null,"url":null,"abstract":"The industrial production processes often produce different concentrations and types of odorous pollutants. Most odors have a low odor threshold, and the human sense of smell can still have a strong, unpleasant odor even at low ppb concentrations. The main challenges in low ppm concentration odor purification are short contact time, high air volume, low equilibrium adsorption capacity, and easy physical desorption. For the first time, this work reviews the technical paths how to purify four typical types of low concentrations of odors such as H<sub>2</sub>S, NH<sub>3</sub>, CH<sub>3</sub>SH, and CH<sub>3</sub>SCH<sub>3</sub> from low ppm concentration levels to low ppb, with the view of the odor sources, the development of treatment technology, international permissible emission standards, and the recent status of adsorbent materials. To begin, Citespace software is employed to analyze the progress, hotspots, and technology trends in the field of odor pollutant research over the past 28 years and the factors that affect removal efficiency of low-concentration odorous pollutants are discussed in detail. Then, taking activated carbon, molecular sieve, and metal-organic frameworks as target adsorbents, how to strengthen the integrated ways of physical adsorption and chemical adsorption of these adsorbents are suggested starting from the synergistic effects of modifications for pore structure, surface chemical functional groups, and complexation and redox reactions of metal ions. As a practice, the application cases of purifying low-concentration odorous pollutants by the adsorption are briefly introduced. Finally, the challenges of developing novel adsorption materials and technologies to purify low-concentration odorous pollutants toward lower than odor threshold are presented.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"21 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136512","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The industrial production processes often produce different concentrations and types of odorous pollutants. Most odors have a low odor threshold, and the human sense of smell can still have a strong, unpleasant odor even at low ppb concentrations. The main challenges in low ppm concentration odor purification are short contact time, high air volume, low equilibrium adsorption capacity, and easy physical desorption. For the first time, this work reviews the technical paths how to purify four typical types of low concentrations of odors such as H2S, NH3, CH3SH, and CH3SCH3 from low ppm concentration levels to low ppb, with the view of the odor sources, the development of treatment technology, international permissible emission standards, and the recent status of adsorbent materials. To begin, Citespace software is employed to analyze the progress, hotspots, and technology trends in the field of odor pollutant research over the past 28 years and the factors that affect removal efficiency of low-concentration odorous pollutants are discussed in detail. Then, taking activated carbon, molecular sieve, and metal-organic frameworks as target adsorbents, how to strengthen the integrated ways of physical adsorption and chemical adsorption of these adsorbents are suggested starting from the synergistic effects of modifications for pore structure, surface chemical functional groups, and complexation and redox reactions of metal ions. As a practice, the application cases of purifying low-concentration odorous pollutants by the adsorption are briefly introduced. Finally, the challenges of developing novel adsorption materials and technologies to purify low-concentration odorous pollutants toward lower than odor threshold are presented.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.