{"title":"Generalized Coherent Wave Control at Dynamic Interfaces","authors":"Youxiu Yu, Dongliang Gao, Yukun Yang, Liangliang Liu, Zhuo Li, Qianru Yang, Haotian Wu, Linyang Zou, Xiao Lin, Jiang Xiong, Songyan Hou, Lei Gao, Hao Hu","doi":"10.1002/lpor.202400399","DOIUrl":null,"url":null,"abstract":"Coherent wave control is of key importance across a broad range of fields such as electromagnetics, photonics, and acoustics. It enables us to amplify or suppress the outgoing waves via engineering amplitudes and phases of multiple incidences. However, within a purely spatially (temporally) engineered medium, coherent wave control requires the frequency of the associated incidences to be identical (opposite). In this work, this conventional constraint is broken by generalizing coherent wave control into a spatiotemporally engineered medium is broken, i.e., the system featuring a dynamic interface. Owing to the broken translational symmetry in space and time, both the subluminal and superluminal interfaces allow interference between scattered waves regardless of their different frequencies and wavevectors. Hence, one can flexibly eliminate the backward- or forward-propagating waves scattered from the dynamic interfaces by controlling the incident amplitudes and phases. The work not only presents a generalized way for reshaping arbitrary waveforms but also provides a promising paradigm to generate ultrafast pulses using low-frequency signals. It has also implemented suppression of forward-propagating waves in microstrip transmission lines with fast photodiode switches.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400399","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent wave control is of key importance across a broad range of fields such as electromagnetics, photonics, and acoustics. It enables us to amplify or suppress the outgoing waves via engineering amplitudes and phases of multiple incidences. However, within a purely spatially (temporally) engineered medium, coherent wave control requires the frequency of the associated incidences to be identical (opposite). In this work, this conventional constraint is broken by generalizing coherent wave control into a spatiotemporally engineered medium is broken, i.e., the system featuring a dynamic interface. Owing to the broken translational symmetry in space and time, both the subluminal and superluminal interfaces allow interference between scattered waves regardless of their different frequencies and wavevectors. Hence, one can flexibly eliminate the backward- or forward-propagating waves scattered from the dynamic interfaces by controlling the incident amplitudes and phases. The work not only presents a generalized way for reshaping arbitrary waveforms but also provides a promising paradigm to generate ultrafast pulses using low-frequency signals. It has also implemented suppression of forward-propagating waves in microstrip transmission lines with fast photodiode switches.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.