{"title":"A thermo-mechanical coupling load model for high-frequency piezoelectric ultrasonic transducer","authors":"Kuan Zhang, Guofu Gao , Wenbin Ma, Ruikang Li, Daohui Xiang, Junjin Ma","doi":"10.1016/j.ultsonch.2024.107148","DOIUrl":null,"url":null,"abstract":"<div><div>The ultrasonic micromachining systems significantly improve machining efficiency and quality, which are increasingly being applied in the manufacturing of microstructures and micro parts. However, the mechanical and thermal loads of the high-frequency piezoelectric ultrasonic transducer (HPUT) of ultrasonic micromachining systems have serious interference with the precise control of resonance frequency tracking, which further causes uncontrollable processing quality and precision. To improve the controllability of resonance frequency tracking, a thermo-mechanical coupling load model for HPUTs is proposed to establish the relationship between the resonance frequency and thermo-mechanical coupling load by introducing the force load constants and thermal load constants into the 6-terminal network electromechanical equivalent circuit. The experimental results show that the proposed thermo-mechanical coupling load model can accurately predict the trend of the resonance frequency when the thermo-mechanical coupling load is under the axial force range of 0–10 N and temperature range of 35–60°C.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107148"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003973","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ultrasonic micromachining systems significantly improve machining efficiency and quality, which are increasingly being applied in the manufacturing of microstructures and micro parts. However, the mechanical and thermal loads of the high-frequency piezoelectric ultrasonic transducer (HPUT) of ultrasonic micromachining systems have serious interference with the precise control of resonance frequency tracking, which further causes uncontrollable processing quality and precision. To improve the controllability of resonance frequency tracking, a thermo-mechanical coupling load model for HPUTs is proposed to establish the relationship between the resonance frequency and thermo-mechanical coupling load by introducing the force load constants and thermal load constants into the 6-terminal network electromechanical equivalent circuit. The experimental results show that the proposed thermo-mechanical coupling load model can accurately predict the trend of the resonance frequency when the thermo-mechanical coupling load is under the axial force range of 0–10 N and temperature range of 35–60°C.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.