Quijote-PNG: Optimizing the Summary Statistics to Measure Primordial Non-Gaussianity

Gabriel Jung, Andrea Ravenni, Michele Liguori, Marco Baldi, William R. Coulton, Francisco Villaescusa-Navarro and Benjamin D. Wandelt
{"title":"Quijote-PNG: Optimizing the Summary Statistics to Measure Primordial Non-Gaussianity","authors":"Gabriel Jung, Andrea Ravenni, Michele Liguori, Marco Baldi, William R. Coulton, Francisco Villaescusa-Navarro and Benjamin D. Wandelt","doi":"10.3847/1538-4357/ad83bd","DOIUrl":null,"url":null,"abstract":"We apply a suite of different estimators to the Quijote-png halo catalogs to find the best approach to constrain Primordial non-Gaussianity (PNG) at nonlinear cosmological scales, up to . The set of summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function, marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the context of the PNG study. We perform a Fisher analysis to estimate their cosmological information content, showing substantial improvements when marked observables are added to the analysis. Starting from these summaries, we train deep neural networks to perform likelihood-free inference of cosmological and PNG parameters. We assess the performance of different subsets of summary statistics; in the case of , we find that a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyze the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if these are deemed more reliable.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad83bd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply a suite of different estimators to the Quijote-png halo catalogs to find the best approach to constrain Primordial non-Gaussianity (PNG) at nonlinear cosmological scales, up to . The set of summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function, marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the context of the PNG study. We perform a Fisher analysis to estimate their cosmological information content, showing substantial improvements when marked observables are added to the analysis. Starting from these summaries, we train deep neural networks to perform likelihood-free inference of cosmological and PNG parameters. We assess the performance of different subsets of summary statistics; in the case of , we find that a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyze the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if these are deemed more reliable.
Quijote-PNG:优化测量原始非高斯性的汇总统计
我们对Quijote-png光晕星表应用了一套不同的估计方法,以找到在非线性宇宙学尺度下约束原始非高斯性(PNG)的最佳方法,最高可达......。 我们分析中考虑的一组汇总统计量包括功率谱、双谱、光晕质量函数、标记功率谱和标记模态双谱。这里首次在 PNG 研究中使用了标记统计量。我们通过费雪分析来估算它们的宇宙学信息含量,结果表明在分析中加入标记观测数据后,它们的信息含量有了很大提高。从这些摘要开始,我们训练深度神经网络,对宇宙学参数和 PNG 参数进行无似然推断。我们评估了不同汇总统计子集的性能;在Ⅳ的情况下,我们发现功率谱和合适的标记功率谱的组合优于功率谱和双谱的组合,后者是 PNG 分析中通常采用的基准统计。分析我们确定的统计数据的最小管道可以通过我们的 ML 算法或更传统的估计器(如果这些估计器被认为更可靠的话)来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信