SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas
{"title":"SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid","authors":"Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas","doi":"10.1038/s41477-024-01847-0","DOIUrl":null,"url":null,"abstract":"Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields. Two algal proteins, MITH1 and SAGA1, play key roles in formation of membranes that deliver CO2 to the pyrenoid, a CO2-concentrating organelle. Their discovery marks a key milestone towards engineering a pyrenoid into land plants for improved yields.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"2038-2051"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01847-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01847-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields. Two algal proteins, MITH1 and SAGA1, play key roles in formation of membranes that deliver CO2 to the pyrenoid, a CO2-concentrating organelle. Their discovery marks a key milestone towards engineering a pyrenoid into land plants for improved yields.

Abstract Image

Abstract Image

SAGA1 和 MITH1 在固着二氧化碳的焦磷酸中产生穿越基质的膜
全球大约三分之一的二氧化碳同化作用是由类火绒体完成的,类火绒体是一种液态细胞器,存在于大多数藻类和一些植物中。据推测,专门的类肾盂穿越膜可通过输送浓缩的二氧化碳来驱动类肾盂中的二氧化碳同化作用,但这些膜是如何穿越类肾盂基质的仍是未知数。在这里,我们展示了 SAGA1 和 MITH1 蛋白在模式藻类莱茵衣藻(Chlamydomonas reinhardtii)中使膜穿过类核基质的过程。缺乏 SAGA1 或 MITH1 的突变体缺乏穿越基质的膜,在二氧化碳限制条件下表现出生长缺陷。在异源系统(模式植物拟南芥)中同时表达 SAGA1 和 MITH1 可产生基质穿越膜。这两种蛋白质都定位在基质穿越膜上。SAGA1 与主要基质成分 Rubisco 结合,是启动基质穿越膜所必需的。MITH1 与 SAGA1 结合,是穿越基质的膜延伸所必需的。我们的数据表明,SAGA1 和 MITH1 通过在膜和基质之间产生粘附作用,使膜穿越基质。我们的研究确定并描述了类焦磷酸基质穿越膜的生物发生过程中的关键因素,证明了这些膜对类焦磷酸功能的重要性,标志着将类焦磷酸工程应用于作物以提高产量的一个重要里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信