Rational Decoration of Porous Organic Polymers with Silver Nanoparticles for Strategic Reduction of Hazardous Nitroaryl Compounds

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Mohammed G. Kotp, Ahmed F. M. El-Mahdy, Shiao-Wei Kuo
{"title":"Rational Decoration of Porous Organic Polymers with Silver Nanoparticles for Strategic Reduction of Hazardous Nitroaryl Compounds","authors":"Mohammed G. Kotp, Ahmed F. M. El-Mahdy, Shiao-Wei Kuo","doi":"10.1039/d4py01179a","DOIUrl":null,"url":null,"abstract":"Porous organic polymers (POPs) have garnered significant attention across various industries due to their promising physicochemical properties. In this study, we employed the classical Friedel-Crafts alkylation strategy to synthesize two types of porous organic polymers, namely Py-CH POP and TPA-CH POP, utilizing chloranil (CH), pyrene (Py), and triphenylamine (TPA) as building blocks. The Py-CH POP exhibits coaxial-like morphologies, uniform micropores, and a moderate surface area of up to 822 m²/g, along with excellent thermal stability, recording a char output of 69.6 wt%. Notably, these CH POPs contain dynamic hydroxyl groups that can effectively attract Ag⁺ ions from silver nitrate solutions and facilitate their reduction into silver nanoparticles, resulting in the formation of Ag@Py-CH and Ag@TPA-CH POP nanocomposites. These nanocomposites serve as efficient nano-catalysts for the reduction of hazardous p-nitrophenol (p-NP) to the safer p-aminophenol (p-AP) at ambient temperature. Importantly, the Ag@Py-CH and Ag@TPA-CH POP nanocomposites demonstrate comparable normalized reduction rates of p-NP, reaching up to 65.3 mg/s. The quaternary amine sites in the Ag@TPA-CH POP nanocomposites play a crucial role in this catalytic reaction, enhancing interactions with the phenolic hydroxyl groups of p-NP and thereby accelerating the reduction process compared to Ag@Py-CH POP. This strategy presents a dynamic approach for the reduction of p-NP, leading to the clean production of p-AP.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"128 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01179a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Porous organic polymers (POPs) have garnered significant attention across various industries due to their promising physicochemical properties. In this study, we employed the classical Friedel-Crafts alkylation strategy to synthesize two types of porous organic polymers, namely Py-CH POP and TPA-CH POP, utilizing chloranil (CH), pyrene (Py), and triphenylamine (TPA) as building blocks. The Py-CH POP exhibits coaxial-like morphologies, uniform micropores, and a moderate surface area of up to 822 m²/g, along with excellent thermal stability, recording a char output of 69.6 wt%. Notably, these CH POPs contain dynamic hydroxyl groups that can effectively attract Ag⁺ ions from silver nitrate solutions and facilitate their reduction into silver nanoparticles, resulting in the formation of Ag@Py-CH and Ag@TPA-CH POP nanocomposites. These nanocomposites serve as efficient nano-catalysts for the reduction of hazardous p-nitrophenol (p-NP) to the safer p-aminophenol (p-AP) at ambient temperature. Importantly, the Ag@Py-CH and Ag@TPA-CH POP nanocomposites demonstrate comparable normalized reduction rates of p-NP, reaching up to 65.3 mg/s. The quaternary amine sites in the Ag@TPA-CH POP nanocomposites play a crucial role in this catalytic reaction, enhancing interactions with the phenolic hydroxyl groups of p-NP and thereby accelerating the reduction process compared to Ag@Py-CH POP. This strategy presents a dynamic approach for the reduction of p-NP, leading to the clean production of p-AP.
用纳米银粒子合理装饰多孔有机聚合物,实现有害硝基芳基化合物的战略性还原
多孔有机聚合物(POPs)因其良好的物理化学特性而在各行各业受到广泛关注。在本研究中,我们采用经典的 Friedel-Crafts 烷基化策略,以氯苯胺 (CH)、芘 (Py) 和三苯胺 (TPA) 为构建基块,合成了两种多孔有机聚合物,即 Py-CH POP 和 TPA-CH POP。Py-CH POP 具有同轴状形态、均匀的微孔和高达 822 m²/g 的适中表面积,同时具有出色的热稳定性,记录的炭产量为 69.6 wt%。值得注意的是,这些 CH 持久性有机污染物含有动态羟基,能有效吸引硝酸银溶液中的银⁺离子,并促进其还原成银纳米粒子,从而形成 Ag@Py-CH 和 Ag@TPA-CH 持久性有机污染物纳米复合材料。这些纳米复合材料可作为高效的纳米催化剂,在常温下将有害的对硝基苯酚(p-NP)还原成更安全的对氨基苯酚(p-AP)。重要的是,Ag@Py-CH 和 Ag@TPA-CH 持久性有机污染物纳米复合材料对对硝基苯酚的归一化还原率相当,高达 65.3 mg/s。与 Ag@Py-CH POP 相比,Ag@TPA-CH POP 纳米复合材料中的季胺位点在这一催化反应中发挥了关键作用,增强了与对-NP 的酚羟基的相互作用,从而加速了还原过程。这种策略为对-NP 的还原提供了一种动态方法,从而实现了对-AP 的清洁生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信