Meisheng Han, Kunxiong Zheng, Jie Liu, Zhiyu Zou, Yongbiao Mu, Hengyuan Hu, Fenghua Yu, Wenjia Li, Lei Wei, Lin Zeng, Tianshou Zhao
{"title":"Hollow Microsphere Structure and Spin‐Polarized Surface Capacitance Endow Ultrafine Fe7S8 Nanocrystals with Excellent Fast‐Charging Capability in Wide‐Temperature‐Range Lithium‐Ion Batteries","authors":"Meisheng Han, Kunxiong Zheng, Jie Liu, Zhiyu Zou, Yongbiao Mu, Hengyuan Hu, Fenghua Yu, Wenjia Li, Lei Wei, Lin Zeng, Tianshou Zhao","doi":"10.1002/aenm.202403851","DOIUrl":null,"url":null,"abstract":"Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub> as a conversion‐type anode shows high capacity in lithium‐ion batteries (LIBs). Nevertheless, the sluggish ion transport rate, low electron conduction behavior, and large volume change upon cycling limit its applications in fast‐charging wide‐temperature‐range LIBs. Here, a simple hydrothermal and subsequent solid‐phase high‐pressure sulfidation route is proposed to synthesize a hollow Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub>/N‐doped C microsphere structure. The hollow space is enveloped by the spheres’ shell consisting of ultrafine Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub> nanocrystals (≈8 nm) embedded into N‐doped C matrix, which enhances ion transport and electrical conduction, and accommodates the volume expansion of Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub>. Remarkably, in situ magnetometry reveals that spin‐polarized surface capacitance occurs during the stage of conversion reaction, in which the formed Fe and Li<jats:sub>2</jats:sub>S act as electrons and ions acceptor, respectively, to construct space charge zone at their interfaces, thus enhancing lithium transport and storage. Accordingly, the hollow microspheres show high gravimetric energy density and outstanding fast‐charging capability along with excellent cycling stability in Ah‐level pouch cells operating from ‐40 to 60 °C. For the first time, this work confirms the effectiveness of spin‐polarized surface capacitance effect on enhancing ion storage and transport in fast‐charging wide‐temperature‐range LIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403851","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe7S8 as a conversion‐type anode shows high capacity in lithium‐ion batteries (LIBs). Nevertheless, the sluggish ion transport rate, low electron conduction behavior, and large volume change upon cycling limit its applications in fast‐charging wide‐temperature‐range LIBs. Here, a simple hydrothermal and subsequent solid‐phase high‐pressure sulfidation route is proposed to synthesize a hollow Fe7S8/N‐doped C microsphere structure. The hollow space is enveloped by the spheres’ shell consisting of ultrafine Fe7S8 nanocrystals (≈8 nm) embedded into N‐doped C matrix, which enhances ion transport and electrical conduction, and accommodates the volume expansion of Fe7S8. Remarkably, in situ magnetometry reveals that spin‐polarized surface capacitance occurs during the stage of conversion reaction, in which the formed Fe and Li2S act as electrons and ions acceptor, respectively, to construct space charge zone at their interfaces, thus enhancing lithium transport and storage. Accordingly, the hollow microspheres show high gravimetric energy density and outstanding fast‐charging capability along with excellent cycling stability in Ah‐level pouch cells operating from ‐40 to 60 °C. For the first time, this work confirms the effectiveness of spin‐polarized surface capacitance effect on enhancing ion storage and transport in fast‐charging wide‐temperature‐range LIBs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.