Myunghwan Song, Junyoung Moon, Hyungseok Yong, Hyeonhui Song, Juneil Park, Jiwoong Hur, Dongchang Kim, Kyungtae Park, Sungwon Jung, Gyeongmo Kim, Sangeui Lee, Deokjae Heo, Kyunghwan Cha, Patrick T. J. Hwang, Jinkee Hong, Giuk Lee, Sangmin Lee
{"title":"Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics","authors":"Myunghwan Song, Junyoung Moon, Hyungseok Yong, Hyeonhui Song, Juneil Park, Jiwoong Hur, Dongchang Kim, Kyungtae Park, Sungwon Jung, Gyeongmo Kim, Sangeui Lee, Deokjae Heo, Kyunghwan Cha, Patrick T. J. Hwang, Jinkee Hong, Giuk Lee, Sangmin Lee","doi":"10.1038/s41528-024-00364-6","DOIUrl":null,"url":null,"abstract":"Electrical stimulation is effective for various therapeutic applications; however, to increase convenience, it is crucial to eliminate generators and batteries for wireless power transmission. This paper presents a full textile-based body-coupled electrical stimulation (BCES) system designed for wireless electrical stimulation using energy loss from electronic devices and static electricity from physical activity. We developed the BCES socks by knitting conductive threads to ensure stability and comfort. BCES socks generate electric fields ranging from tens to hundreds of millivolts per millimeter, which are sufficient to activate muscle fibers. Experimental and computational analyses confirmed the effective concentration of the electric fields. Human trials demonstrated significant improvements in exercise performance, with a 21.47% increase in calf raise frequency, an 11.97% increase in repetition count, and a 6.25% reduction in muscle fatigue. These results indicate the potential of BCES socks as a practical battery-free solution for enhancing muscle activity and reducing fatigue.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":12.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00364-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00364-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical stimulation is effective for various therapeutic applications; however, to increase convenience, it is crucial to eliminate generators and batteries for wireless power transmission. This paper presents a full textile-based body-coupled electrical stimulation (BCES) system designed for wireless electrical stimulation using energy loss from electronic devices and static electricity from physical activity. We developed the BCES socks by knitting conductive threads to ensure stability and comfort. BCES socks generate electric fields ranging from tens to hundreds of millivolts per millimeter, which are sufficient to activate muscle fibers. Experimental and computational analyses confirmed the effective concentration of the electric fields. Human trials demonstrated significant improvements in exercise performance, with a 21.47% increase in calf raise frequency, an 11.97% increase in repetition count, and a 6.25% reduction in muscle fatigue. These results indicate the potential of BCES socks as a practical battery-free solution for enhancing muscle activity and reducing fatigue.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.