Enhanced Photo‐Thermal CO2 Methanation with Tunable RuxNi1‐x Catalytic Sites: Alloying Beyond Pure Ru

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chan Guo, Lige Wang, Yunxiang Tang, Zhengyi Yang, Yufei Zhao, Yanyan Jiang, Xiaodong Wen, Fenglong Wang
{"title":"Enhanced Photo‐Thermal CO2 Methanation with Tunable RuxNi1‐x Catalytic Sites: Alloying Beyond Pure Ru","authors":"Chan Guo, Lige Wang, Yunxiang Tang, Zhengyi Yang, Yufei Zhao, Yanyan Jiang, Xiaodong Wen, Fenglong Wang","doi":"10.1002/adfm.202414931","DOIUrl":null,"url":null,"abstract":"Developing solid‐solution nano‐alloys from immiscible metals has garnered significant interest; however, the high formation entropy poses substantial challenges in synthesis, hindering a comprehensive understanding of the catalytic mechanisms under alloying effects. Herein, the synthesis of small‐sized (≈2.5 nm) Ru<jats:sub>x</jats:sub>Ni<jats:sub>1‐x</jats:sub> solid‐solution alloy nanoparticles with precisely controlled Ru/Ni ratios across a broad compositional range is reported for the first time, despite their bulk immiscibility. The Ru<jats:sub>0.76</jats:sub>Ni<jats:sub>0.24</jats:sub>/TiO<jats:sub>2</jats:sub> catalyst, with an optimized Ru/Ni ratio, delivers superior photo‐thermal catalytic activity for CO<jats:sub>2</jats:sub> methanation, achieving a CH<jats:sub>4</jats:sub> production rate of 3.58 mol g<jats:sub>metal</jats:sub><jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> with 94% selectivity at 250 °C under light irradiation, representing a 2.82‐fold enhancement over monometallic Ru/TiO<jats:sub>2</jats:sub>. Comprehensive investigations reveal that the reconstruction of electronic structure at Ru–Ni active sites enhances the adsorption/activation of reactants, promotes the transformation of intermediate HCO<jats:sub>3</jats:sub><jats:sup>*</jats:sup> to HCOO<jats:sup>*</jats:sup>, and facilitates the separation of the photo‐generated charge carriers witnessed by the femtosecond time‐resolved transient absorption (fs‐TA) spectroscopy. These combined effects collectively result in significantly enhanced CH<jats:sub>4</jats:sub> formation performance. This work highlights the potential of regulating catalytic sites in immiscible metal combinations for photo‐thermal catalytic CO<jats:sub>2</jats:sub> conversion, underscoring the promise of these cost‐effective alloys in heterogeneous catalysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"69 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414931","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing solid‐solution nano‐alloys from immiscible metals has garnered significant interest; however, the high formation entropy poses substantial challenges in synthesis, hindering a comprehensive understanding of the catalytic mechanisms under alloying effects. Herein, the synthesis of small‐sized (≈2.5 nm) RuxNi1‐x solid‐solution alloy nanoparticles with precisely controlled Ru/Ni ratios across a broad compositional range is reported for the first time, despite their bulk immiscibility. The Ru0.76Ni0.24/TiO2 catalyst, with an optimized Ru/Ni ratio, delivers superior photo‐thermal catalytic activity for CO2 methanation, achieving a CH4 production rate of 3.58 mol gmetal−1 h−1 with 94% selectivity at 250 °C under light irradiation, representing a 2.82‐fold enhancement over monometallic Ru/TiO2. Comprehensive investigations reveal that the reconstruction of electronic structure at Ru–Ni active sites enhances the adsorption/activation of reactants, promotes the transformation of intermediate HCO3* to HCOO*, and facilitates the separation of the photo‐generated charge carriers witnessed by the femtosecond time‐resolved transient absorption (fs‐TA) spectroscopy. These combined effects collectively result in significantly enhanced CH4 formation performance. This work highlights the potential of regulating catalytic sites in immiscible metal combinations for photo‐thermal catalytic CO2 conversion, underscoring the promise of these cost‐effective alloys in heterogeneous catalysis.

Abstract Image

利用可调 RuxNi1-x 催化位点增强光热 CO2 甲烷化:合金化超越纯 Ru
利用不相溶金属开发固溶纳米合金已引起了广泛关注;然而,高形成熵给合成带来了巨大挑战,阻碍了对合金效应下催化机理的全面了解。本文首次报道了小尺寸(≈2.5 nm)RuxNi1-x 固溶体合金纳米粒子的合成,尽管它们的块体不相溶,但在广泛的成分范围内具有精确控制的 Ru/Ni 比率。经过优化的 Ru/Ni 比率的 Ru0.76Ni0.24/TiO2 催化剂在 CO2 甲烷化方面具有卓越的光热催化活性,在光照射下于 250 °C 的条件下,CH4 产率达到 3.58 mol gmetal-1 h-1,选择性为 94%,比单金属 Ru/TiO2 提高了 2.82 倍。综合研究表明,Ru-Ni 活性位点电子结构的重建增强了反应物的吸附/活化,促进了中间产物 HCO3* 向 HCOO* 的转化,并促进了飞秒时间分辨瞬态吸收(fs-TA)光谱所显示的光生电荷载流子的分离。这些综合效应共同显著提高了 CH4 的形成性能。这项工作凸显了调节不相溶金属组合中催化位点进行光热催化 CO2 转化的潜力,强调了这些具有成本效益的合金在异相催化中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信