Heavy-Metal-Free Heterostructured Nanocrystals for Light-Emitting Applications

IF 2.9 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yeong Uk Kim, Dae Yun Kim, Ju Won Park, Byeong Guk Jeong
{"title":"Heavy-Metal-Free Heterostructured Nanocrystals for Light-Emitting Applications","authors":"Yeong Uk Kim,&nbsp;Dae Yun Kim,&nbsp;Ju Won Park,&nbsp;Byeong Guk Jeong","doi":"10.1007/s11814-024-00305-z","DOIUrl":null,"url":null,"abstract":"<div><p>Rising demands on environmentally benign materials lead to the development of heavy-metal-free NCs for light-emitting applications. Tremendous efforts to solve the challenges of heavy-metal-free NCs have been focused on the discovery of synthetic chemistry and photophysical properties of the NCs. This review provides a comprehensive overview of the progress in the synthesis of heavy-metal-free semiconductor NCs, mainly focusing on III–V, I–III–VI<sub>2</sub>, and II–VI groups. The progress details the discovery of their precursor chemistry and the formation of heterostructures to fit their chemical nature and photophysical properties. The continuous efforts on the structural design and synthetic chemistry reveal how exceptional properties of the NCs materialized. The remarkable progress in photophysical properties and synthetic chemistry on the NCs supports the potential of these NCs in optoelectronic applications, including light-emitting diode (LED) and solar cell, demonstrating their suitability as strong alternatives to Cd and Pb-based NCs. This review offers insights into the remaining challenges of the NCs, directing the future perspectives of the NCs.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3303 - 3315"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00305-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rising demands on environmentally benign materials lead to the development of heavy-metal-free NCs for light-emitting applications. Tremendous efforts to solve the challenges of heavy-metal-free NCs have been focused on the discovery of synthetic chemistry and photophysical properties of the NCs. This review provides a comprehensive overview of the progress in the synthesis of heavy-metal-free semiconductor NCs, mainly focusing on III–V, I–III–VI2, and II–VI groups. The progress details the discovery of their precursor chemistry and the formation of heterostructures to fit their chemical nature and photophysical properties. The continuous efforts on the structural design and synthetic chemistry reveal how exceptional properties of the NCs materialized. The remarkable progress in photophysical properties and synthetic chemistry on the NCs supports the potential of these NCs in optoelectronic applications, including light-emitting diode (LED) and solar cell, demonstrating their suitability as strong alternatives to Cd and Pb-based NCs. This review offers insights into the remaining challenges of the NCs, directing the future perspectives of the NCs.

Abstract Image

用于发光应用的无重金属异质结构纳米晶体
对无害环境材料的需求不断增长,促使人们开发出用于发光应用的无重金属数控材料。为解决无重金属 NCs 面临的挑战,人们在发现 NCs 的合成化学和光物理性质方面做出了巨大努力。本综述全面概述了无重金属半导体 NC 的合成进展,主要侧重于 III-V、I-III-VI2 和 II-VI 族。这些进展详细介绍了发现其前驱体化学性质和形成异质结构以适应其化学性质和光物理性质的过程。在结构设计和合成化学方面的不懈努力揭示了 NCs 如何实现其优异特性。数控材料在光物理性质和合成化学方面取得的重大进展,支持了这些数控材料在发光二极管(LED)和太阳能电池等光电应用领域的潜力,证明了它们是镉基和铅基数控材料的有力替代品。本综述深入探讨了数控材料仍然面临的挑战,并展望了数控材料的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信