{"title":"The effects of concrete temperature on air void parameters in pumped concrete","authors":"Bahaa N. Abdelrahman, M. Tyler Ley","doi":"10.1617/s11527-024-02510-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of concrete pumping on air content, SAM Number, spacing factor, and freeze–thaw performance. This work focuses on how the air dissolves under pressure and then returns to the concrete at room (20 °C/68°F), cold (8 °C/46°F), and hot (40 °C/104°F) temperatures. The research reveals that concrete pumping leads to a significant reduction in air content, with cold mixtures experiencing higher air loss compared to room temperature and hot mixtures. Despite these changes, freeze–thaw performance remains satisfactory for mixtures with initial air content above 4% and SAM Number below 0.32. The study also observes that the dissolved air bubbles return to the concrete with a similar bubble distribution as was in the original mixture.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02510-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of concrete pumping on air content, SAM Number, spacing factor, and freeze–thaw performance. This work focuses on how the air dissolves under pressure and then returns to the concrete at room (20 °C/68°F), cold (8 °C/46°F), and hot (40 °C/104°F) temperatures. The research reveals that concrete pumping leads to a significant reduction in air content, with cold mixtures experiencing higher air loss compared to room temperature and hot mixtures. Despite these changes, freeze–thaw performance remains satisfactory for mixtures with initial air content above 4% and SAM Number below 0.32. The study also observes that the dissolved air bubbles return to the concrete with a similar bubble distribution as was in the original mixture.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.