Viscous and turbulent stress measurements above and below laboratory wind waves

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Janina Tenhaus, Marc P. Buckley, Silvia Matt, Ivan B. Savelyev
{"title":"Viscous and turbulent stress measurements above and below laboratory wind waves","authors":"Janina Tenhaus,&nbsp;Marc P. Buckley,&nbsp;Silvia Matt,&nbsp;Ivan B. Savelyev","doi":"10.1007/s00348-024-03898-7","DOIUrl":null,"url":null,"abstract":"<p>The influence of wind stress, wind drift, and wind-wave (microscale) breaking on the coupled air–sea boundary layer is poorly understood. We performed high-resolution planar and stereo velocity measurements within the first micrometers to centimeters above and below surface gravity waves at the University of Miami’s SUSTAIN air–sea interaction facility. A particle image velocimetry (PIV) system was adapted and installed in the large (18 m long, 6 m wide) wind-wave tunnel at a fetch of approximately 10 m. In addition, wave field properties were captured by laser-induced fluorescence (LIF). Experiments were conducted with wind waves and wind over mechanically generated swell. In this work, we focus on rather smooth, young, wind-generated waves. We present instantaneous velocity and vorticity fields above and below the air–water interface for the same wind-wave conditions. Both instantaneous and phase-averaged fields show strong along-wave modulations in viscous stress. For steeper waves, we observe airflow separation and increased negative turbulent stress below crests, accompanied by sporadic drops in viscous stress below zero. We describe the wave-induced modulations of the airflow structure as well as the wind-induced water dynamics and discuss the importance of the viscous stress for the total momentum budget.</p>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03898-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03898-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of wind stress, wind drift, and wind-wave (microscale) breaking on the coupled air–sea boundary layer is poorly understood. We performed high-resolution planar and stereo velocity measurements within the first micrometers to centimeters above and below surface gravity waves at the University of Miami’s SUSTAIN air–sea interaction facility. A particle image velocimetry (PIV) system was adapted and installed in the large (18 m long, 6 m wide) wind-wave tunnel at a fetch of approximately 10 m. In addition, wave field properties were captured by laser-induced fluorescence (LIF). Experiments were conducted with wind waves and wind over mechanically generated swell. In this work, we focus on rather smooth, young, wind-generated waves. We present instantaneous velocity and vorticity fields above and below the air–water interface for the same wind-wave conditions. Both instantaneous and phase-averaged fields show strong along-wave modulations in viscous stress. For steeper waves, we observe airflow separation and increased negative turbulent stress below crests, accompanied by sporadic drops in viscous stress below zero. We describe the wave-induced modulations of the airflow structure as well as the wind-induced water dynamics and discuss the importance of the viscous stress for the total momentum budget.

实验室风浪上方和下方的粘应力和湍流应力测量结果
人们对风应力、风漂移和风浪(微尺度)破碎对耦合海气边界层的影响知之甚少。我们在迈阿密大学的 SUSTAIN 海气相互作用设施中,对表面重力波上下最初几微米到几厘米的范围内进行了高分辨率的平面和立体速度测量。此外,还利用激光诱导荧光(LIF)捕捉波场特性。对风浪和机械产生的涌浪上的风进行了实验。在这项工作中,我们将重点放在相当平滑、年轻的风力产生的波浪上。我们展示了相同风浪条件下空气-水界面上方和下方的瞬时速度场和涡度场。瞬时场和相位平均场都显示出粘滞应力的强烈沿波调制。对于较陡的波浪,我们观察到气流分离和波峰下方负湍流应力的增加,同时粘应力零星下降到零以下。我们描述了由波浪引起的气流结构变化以及由风引起的水动力学变化,并讨论了粘性应力对总动量预算的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信