Structural, optical, and dielectric properties of sol-gel derived perovskite ZnSnO3 nanomaterials

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
D. M. Ibrahim, A. A. Gaber, A. E. Reda, D. A. Abdel Aziz, N. A. Ajiba
{"title":"Structural, optical, and dielectric properties of sol-gel derived perovskite ZnSnO3 nanomaterials","authors":"D. M. Ibrahim,&nbsp;A. A. Gaber,&nbsp;A. E. Reda,&nbsp;D. A. Abdel Aziz,&nbsp;N. A. Ajiba","doi":"10.1007/s10971-024-06550-2","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc stannate (ZnSnO<sub>3</sub>) ceramic nanoparticles were synthesized via a sol-gel polymeric technique utilizing polyacrylic acid as a template polymer. The effect of pH during the synthesis process was investigated by preparing the ZnSnO<sub>3</sub> nanoparticles at pH 3 and 8. The structural, molecular, morphological, optical, and dielectric properties of the synthesized ZnSnO<sub>3</sub> nanoparticles were thoroughly characterized using FTIR, XRD, SEM, and TEM, with optical and dielectric measurements. FTIR and XRD analyses confirmed the phase purity of the synthesized ZnSnO<sub>3</sub> nanoparticles, which exhibited an orthorhombic perovskite crystal structure. As observed in the SEM and TEM images, the ZnSnO<sub>3</sub> nanoparticles prepared at pH 8 displayed a more defined cubic crystalline morphology, with an average particle size of 128 nm. The optical properties of the ZnSnO<sub>3</sub> nanoparticles showed a high absorption edge in the UV region for both pH conditions. The calculated bandgap energies were 3.67 eV for pH 3 and 3.57 eV for pH 8. The dielectric properties at pH 3 and 8 exhibited a low dielectric constant (ε′ = 4 and 5, respectively) and very low dielectric loss (tan δ = 0.1 and 0.06, respectively) at 1 MHz. These exceptional optical and dielectric properties make the prepared ZnSnO<sub>3</sub> nanoparticles a promising material for various applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"703 - 714"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06550-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06550-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc stannate (ZnSnO3) ceramic nanoparticles were synthesized via a sol-gel polymeric technique utilizing polyacrylic acid as a template polymer. The effect of pH during the synthesis process was investigated by preparing the ZnSnO3 nanoparticles at pH 3 and 8. The structural, molecular, morphological, optical, and dielectric properties of the synthesized ZnSnO3 nanoparticles were thoroughly characterized using FTIR, XRD, SEM, and TEM, with optical and dielectric measurements. FTIR and XRD analyses confirmed the phase purity of the synthesized ZnSnO3 nanoparticles, which exhibited an orthorhombic perovskite crystal structure. As observed in the SEM and TEM images, the ZnSnO3 nanoparticles prepared at pH 8 displayed a more defined cubic crystalline morphology, with an average particle size of 128 nm. The optical properties of the ZnSnO3 nanoparticles showed a high absorption edge in the UV region for both pH conditions. The calculated bandgap energies were 3.67 eV for pH 3 and 3.57 eV for pH 8. The dielectric properties at pH 3 and 8 exhibited a low dielectric constant (ε′ = 4 and 5, respectively) and very low dielectric loss (tan δ = 0.1 and 0.06, respectively) at 1 MHz. These exceptional optical and dielectric properties make the prepared ZnSnO3 nanoparticles a promising material for various applications.

Graphical Abstract

溶胶-凝胶法获得的过氧化物 ZnSnO3 纳米材料的结构、光学和介电性能
利用聚丙烯酸作为模板聚合物,通过溶胶-凝胶聚合物技术合成了锡酸锌(ZnSnO3)陶瓷纳米粒子。通过在 pH 值为 3 和 8 的条件下制备 ZnSnO3 纳米粒子,研究了合成过程中 pH 值的影响。利用傅立叶变换红外光谱、X 射线衍射、扫描电镜和 TEM 以及光学和介电测量,对合成的 ZnSnO3 纳米粒子的结构、分子、形态、光学和介电性质进行了全面的表征。傅立叶变换红外光谱和 X 射线衍射分析证实了合成的 ZnSnO3 纳米粒子的相纯度,其晶体结构为正交包晶。从 SEM 和 TEM 图像中可以观察到,在 pH 值为 8 时制备的 ZnSnO3 纳米粒子呈现出更清晰的立方晶体形态,平均粒径为 128 nm。在两种 pH 值条件下,ZnSnO3 纳米粒子的光学特性在紫外区都显示出较高的吸收边缘。pH 3 和 pH 8 条件下的介电性能显示出较低的介电常数(分别为 ε′ = 4 和 5)和在 1 MHz 频率下极低的介电损耗(分别为 tan δ = 0.1 和 0.06)。这些优异的光学和介电特性使制备的 ZnSnO3 纳米粒子成为一种具有多种应用前景的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信