Juchao Yan, Xin Zhang, Xiaoxu Li, Roya Baghi, Brandon L. Weeks, Louisa J. Hope-Weeks
{"title":"Facile incorporation of optical sensitizers into nitrocellulose aerogels for improved laser ignition and combustion","authors":"Juchao Yan, Xin Zhang, Xiaoxu Li, Roya Baghi, Brandon L. Weeks, Louisa J. Hope-Weeks","doi":"10.1007/s42114-024-00999-z","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate a straightforward and effective method to achieve uniform infiltration of optical sensitizers into nitrocellulose aerogels using a sol–gel method followed by supercritical carbon dioxide drying. The optical sensitizers employed in this study include gold nanoparticles capped with self-assembled monolayers of hydroxyl and/or carboxylic functional groups as well as carboxylated multi-walled carbon nanotubes. The resulting robust, monolithic aerogels were characterized in detail by using scanning electron microscopy, specific surface area measurements, differential scanning colorimetry, and laser initiation and combustion. Although the composite aerogels exhibited similar surface areas, morphologies, and microstructures as pure nitrocellulose aerogels, they exhibited increased sensitivity to laser stimuli and demonstrated improved combustion properties compared to pure nitrocellulose aerogels. We attribute these enhanced performances to the possible increase in photothermal conversion and thermal conductivity facilitated by the incorporation of optical sensitizers within the aerogels.</p><h3>Graphical Abstract</h3><p>The incorporation of optical sensitizers into the aerogels enhanced their sensitivity to laser stimuli and accelerated their combustion rate, owing to the superior photothermal conversion and improved thermal conductivity provided by the sensitizers.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00999-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a straightforward and effective method to achieve uniform infiltration of optical sensitizers into nitrocellulose aerogels using a sol–gel method followed by supercritical carbon dioxide drying. The optical sensitizers employed in this study include gold nanoparticles capped with self-assembled monolayers of hydroxyl and/or carboxylic functional groups as well as carboxylated multi-walled carbon nanotubes. The resulting robust, monolithic aerogels were characterized in detail by using scanning electron microscopy, specific surface area measurements, differential scanning colorimetry, and laser initiation and combustion. Although the composite aerogels exhibited similar surface areas, morphologies, and microstructures as pure nitrocellulose aerogels, they exhibited increased sensitivity to laser stimuli and demonstrated improved combustion properties compared to pure nitrocellulose aerogels. We attribute these enhanced performances to the possible increase in photothermal conversion and thermal conductivity facilitated by the incorporation of optical sensitizers within the aerogels.
Graphical Abstract
The incorporation of optical sensitizers into the aerogels enhanced their sensitivity to laser stimuli and accelerated their combustion rate, owing to the superior photothermal conversion and improved thermal conductivity provided by the sensitizers.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.