Gauge/Liouville Triality

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Mina Aganagic, Nathan Haouzi, Can Kozçaz, Shamil Shakirov
{"title":"Gauge/Liouville Triality","authors":"Mina Aganagic,&nbsp;Nathan Haouzi,&nbsp;Can Kozçaz,&nbsp;Shamil Shakirov","doi":"10.1007/s00220-024-05163-8","DOIUrl":null,"url":null,"abstract":"<div><p>Conformal blocks of the Virasoro algebra have a Coulomb-gas representation as Dotsenko-Fateev integrals over the positions of screening charges. In <i>q</i>-deformed Virasoro, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in Dotsenko-Fateev representation, as the partition functions of a class of 3d <i>U</i>(<i>N</i>) gauge theories with <span>\\({{\\mathcal {N}}}=2\\)</span> supersymmetry, in the <span>\\(\\Omega \\)</span>-background. Coupling the 3d gauge theory to a flavor in fundamental representation corresponds to inserting a Virasoro vertex operator; the two real mass parameters determine the momentum and position of the puncture. The Dotsenko-Fateev integrals can be computed by residues. The result is the instanton sum of a five dimensional <span>\\({{\\mathcal {N}}}=1\\)</span> gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05163-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conformal blocks of the Virasoro algebra have a Coulomb-gas representation as Dotsenko-Fateev integrals over the positions of screening charges. In q-deformed Virasoro, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in Dotsenko-Fateev representation, as the partition functions of a class of 3d U(N) gauge theories with \({{\mathcal {N}}}=2\) supersymmetry, in the \(\Omega \)-background. Coupling the 3d gauge theory to a flavor in fundamental representation corresponds to inserting a Virasoro vertex operator; the two real mass parameters determine the momentum and position of the puncture. The Dotsenko-Fateev integrals can be computed by residues. The result is the instanton sum of a five dimensional \({{\mathcal {N}}}=1\) gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.

Abstract Image

量规/刘维尔三重性
维拉索罗代数的共形块具有库仑-气体表示法,即筛选电荷位置上的多森科-法捷夫积分。在q变形的维拉索罗中,当用多森科-法捷耶夫(Dotsenko-Fateev)表示法书写时,具有任意数量穿刺的球面上的共形块显然与具有\({{\mathcal {N}}=2\) 超对称性的一类3d U(N)规理论在\(\Omega \)-背景下的分割函数相同。将3d规理论耦合到基本表示中的一种味道,相当于插入一个维拉索罗顶点算子;两个实质量参数决定了穿刺的动量和位置。多森科-法捷耶夫积分可以通过残差计算出来。结果就是五维({{\mathcal {N}}}=1\ )规理论的瞬子和。极点的位置由分区元组标注,积分的残差是内克拉索夫和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信