Emergence of Near-TAP Free Energy Functional in the SK Model at High Temperature

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Véronique Gayrard
{"title":"Emergence of Near-TAP Free Energy Functional in the SK Model at High Temperature","authors":"Véronique Gayrard","doi":"10.1007/s00220-024-05159-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the SK model at inverse temperature <span>\\(\\beta &gt;0\\)</span> and strictly positive field <span>\\(h&gt;0\\)</span> in the region of <span>\\((\\beta ,h)\\)</span> where the replica-symmetric formula is valid. An integral representation of the partition function derived from the Hubbard-Stratonovitch transformation combined with a duality formula is used to prove that the infinite volume free energy of the SK model can be expressed as a variational formula on the space of magnetisations, <i>m</i>. The resulting free energy functional differs from that of Thouless, Anderson and Palmer (TAP) by the term <span>\\( -\\frac{\\beta ^2}{4}\\left( q-q_{\\text {EA}}(m)\\right) ^2 \\)</span> where <span>\\(q_{\\text {EA}}(m)\\)</span> is the Edwards-Anderson parameter and <i>q</i> is the minimiser of the replica-symmetric formula. Thus, both functionals have the same critical points and take the same value on the subspace of magnetisations satisfying <span>\\(q_{\\text {EA}}(m)=q\\)</span>. This result is based on an in-depth study of the global maximum of this near-TAP free energy functional using Bolthausen’s solutions of the TAP equations, Bandeira &amp; van Handel’s bounds on the spectral norm of non-homogeneous Wigner-type random matrices, and Gaussian comparison techniques. It holds for <span>\\((\\beta ,h)\\)</span> in a large subregion of the de Almeida and Thouless high-temperature stability region.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05159-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the SK model at inverse temperature \(\beta >0\) and strictly positive field \(h>0\) in the region of \((\beta ,h)\) where the replica-symmetric formula is valid. An integral representation of the partition function derived from the Hubbard-Stratonovitch transformation combined with a duality formula is used to prove that the infinite volume free energy of the SK model can be expressed as a variational formula on the space of magnetisations, m. The resulting free energy functional differs from that of Thouless, Anderson and Palmer (TAP) by the term \( -\frac{\beta ^2}{4}\left( q-q_{\text {EA}}(m)\right) ^2 \) where \(q_{\text {EA}}(m)\) is the Edwards-Anderson parameter and q is the minimiser of the replica-symmetric formula. Thus, both functionals have the same critical points and take the same value on the subspace of magnetisations satisfying \(q_{\text {EA}}(m)=q\). This result is based on an in-depth study of the global maximum of this near-TAP free energy functional using Bolthausen’s solutions of the TAP equations, Bandeira & van Handel’s bounds on the spectral norm of non-homogeneous Wigner-type random matrices, and Gaussian comparison techniques. It holds for \((\beta ,h)\) in a large subregion of the de Almeida and Thouless high-temperature stability region.

高温下 SK 模型中出现的近 TAP 自由能函数
我们研究了在反温度((\beta >0\)和严格正场((h>0\))区域内的SK模型,其中复制对称公式是有效的。从哈伯德-斯特拉托诺维奇变换导出的分割函数的积分表示与对偶公式相结合,被用来证明SK模型的无限体积自由能可以表示为磁性空间m上的变分公式。由此得到的自由能函数与 Thouless、Anderson 和 Palmer(TAP)的不同之处在于 \( -\frac{beta ^2}{4}\left( q-q_\text {EA}}(m)\right) ^2 \),其中 \(q_\text {EA}}(m)\) 是爱德华兹-安德森参数,q 是复制对称公式的最小值。因此,这两个函数具有相同的临界点,并且在满足 \(q_{\text {EA}}(m)=q\) 的磁性子空间上取相同的值。这一结果是基于对这一近TAP自由能函数全局最大值的深入研究,使用了博尔索森对TAP方程的求解、Bandeira & van Handel对非均相维格纳型随机矩阵谱规范的约束以及高斯比较技术。在 de Almeida 和 Thouless 高温稳定区的一个大的子区域中,它对\((\beta ,h)\)是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信