{"title":"Study on the Hydrogen Evolution Reaction Performance of Graphene Synthesized by Detonation Approach","authors":"Xitao Qiao, Shuaidong Wang, Jiale Zhang, Yanyan Wang, Guangke Tian","doi":"10.1007/s10562-024-04840-6","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene with high-density defects was generated by one-step gaseous detonation method, designated as DG. The DG exhibits a highly hydrogen evolution reaction (HER) performance in terms of its lower onset potential of 223 mV and smaller Tafel slope of 120 mV·dec<sup>−1</sup>, which are superior to those of commercial counterpart (CG). Furthermore, the value of DG acted as an excellent support of active materials was verified by successfully hybridizing the MoS<sub>2</sub> with DG and the improvement of DG on the HER performance of MoS<sub>2</sub>. This work provides a simple, economical, energy-saving and high yield to prepared DG with highly HER electrocatalytic activity and advantages as an excellent support material, making it of great value in practical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04840-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene with high-density defects was generated by one-step gaseous detonation method, designated as DG. The DG exhibits a highly hydrogen evolution reaction (HER) performance in terms of its lower onset potential of 223 mV and smaller Tafel slope of 120 mV·dec−1, which are superior to those of commercial counterpart (CG). Furthermore, the value of DG acted as an excellent support of active materials was verified by successfully hybridizing the MoS2 with DG and the improvement of DG on the HER performance of MoS2. This work provides a simple, economical, energy-saving and high yield to prepared DG with highly HER electrocatalytic activity and advantages as an excellent support material, making it of great value in practical applications.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.