Synthesis of ZnTe powders from green solvents by a solvothermal method. Study of the sensing properties in a CO atmosphere

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
José Josué Rodríguez Pizano, M. de la L. Olvera
{"title":"Synthesis of ZnTe powders from green solvents by a solvothermal method. Study of the sensing properties in a CO atmosphere","authors":"José Josué Rodríguez Pizano,&nbsp;M. de la L. Olvera","doi":"10.1007/s10854-024-13818-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the characterization and testing of sensing properties of ZnTe powders for detecting carbon monoxide were investigated. The ZnTe synthesis was reached by a solvothermal process, using three different green solvents, methanol, ethanol, and isopropanol. The structural, morphological, and compositional properties of ZnTe powders were analyzed by X-ray diffraction, XRD, scanning electron microscopy, SEM, and atomic force microscopy, AFM, and X-ray energy dispersion (EDS), respectively. XRD confirmed the zincblende-type cubic phase of ZnTe, with crystallite sizes of the order of 69 nm. SEM images of all synthesized samples showed a surface covered with particles of different sizes and irregular morphologies. Finally, the sensing response of ZnTe samples to CO was measured for concentrations varying from 1 to 500 ppm at different operating temperatures, 100, 200, and 300 °C. The highest sensitivity, 18.4, was obtained for ZnTe samples synthesized from isopropanol as solvent, so ZnTe powders showed a good response for CO detection, resulting these materials promising to be applied as gas sensors.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 32","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-13818-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13818-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the characterization and testing of sensing properties of ZnTe powders for detecting carbon monoxide were investigated. The ZnTe synthesis was reached by a solvothermal process, using three different green solvents, methanol, ethanol, and isopropanol. The structural, morphological, and compositional properties of ZnTe powders were analyzed by X-ray diffraction, XRD, scanning electron microscopy, SEM, and atomic force microscopy, AFM, and X-ray energy dispersion (EDS), respectively. XRD confirmed the zincblende-type cubic phase of ZnTe, with crystallite sizes of the order of 69 nm. SEM images of all synthesized samples showed a surface covered with particles of different sizes and irregular morphologies. Finally, the sensing response of ZnTe samples to CO was measured for concentrations varying from 1 to 500 ppm at different operating temperatures, 100, 200, and 300 °C. The highest sensitivity, 18.4, was obtained for ZnTe samples synthesized from isopropanol as solvent, so ZnTe powders showed a good response for CO detection, resulting these materials promising to be applied as gas sensors.

利用溶热法从绿色溶剂中合成 ZnTe 粉末。研究 CO 大气中的传感特性
在这项工作中,研究人员对用于检测一氧化碳的碲锌粉的传感特性进行了表征和测试。ZnTe 的合成采用溶热法,使用了甲醇、乙醇和异丙醇三种不同的绿色溶剂。X 射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和 X 射线能量色散(EDS)分别分析了 ZnTe 粉末的结构、形态和组成特性。X 射线衍射证实 ZnTe 为锌混合物型立方相,晶粒大小为 69 纳米。所有合成样品的扫描电子显微镜图像都显示,样品表面布满了大小不一、形态不规则的颗粒。最后,在 100、200 和 300 °C 的不同工作温度下,测量了 ZnTe 样品对浓度为 1 至 500 ppm 的 CO 的传感响应。以异丙醇为溶剂合成的 ZnTe 样品灵敏度最高,达到 18.4,因此 ZnTe 粉末在检测 CO 方面表现出良好的响应,因此这些材料有望用作气体传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信