{"title":"Study on leaching SiO2 and kinetics of laterite nickel ore in hydrometallurgy","authors":"Xianyi Zhao","doi":"10.1007/s12633-024-03118-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, laterite nickel ore was combined with NaOH to extract SiO<sub>2</sub> by medium temperature roasting. Firstly, in the single factor experiment, the calcination temperature was 400 °C, the calcination time was 2 h, and the alkali ore ratio was 1.2:1, which was the best calcination conditions. At the same time, the dissolution rate of SiO<sub>2</sub> could reach 98.87%. Then, in order to explore the influence order of different experimental factors on the dissolution rate of SiO<sub>2</sub>, the orthogonal experiment was used to determine that the calcination time had the greatest influence on the dissolution rate of SiO<sub>2</sub>, followed by the calcination temperature, and finally the alkali ore ratio. Finally, combining kinetic and thermodynamic analysis, the rate equation of the reaction was determined: 1-(1-α)1/3 = 4.9761 × 104 × exp[-5730/(RT)]t, and the reaction process was controlled by the interfacial reaction. Thermodynamic analysis showed that the reaction could proceed spontaneously under certain conditions.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 17","pages":"6209 - 6220"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03118-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, laterite nickel ore was combined with NaOH to extract SiO2 by medium temperature roasting. Firstly, in the single factor experiment, the calcination temperature was 400 °C, the calcination time was 2 h, and the alkali ore ratio was 1.2:1, which was the best calcination conditions. At the same time, the dissolution rate of SiO2 could reach 98.87%. Then, in order to explore the influence order of different experimental factors on the dissolution rate of SiO2, the orthogonal experiment was used to determine that the calcination time had the greatest influence on the dissolution rate of SiO2, followed by the calcination temperature, and finally the alkali ore ratio. Finally, combining kinetic and thermodynamic analysis, the rate equation of the reaction was determined: 1-(1-α)1/3 = 4.9761 × 104 × exp[-5730/(RT)]t, and the reaction process was controlled by the interfacial reaction. Thermodynamic analysis showed that the reaction could proceed spontaneously under certain conditions.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.