Recent Developments in Near-Infrared-II Luminescence Imaging Using Inorganic Nanoparticles: Semiconductor Quantum Dots and Lanthanide Nanoparticles

IF 2.9 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jeong Geun Kim, Hyeon Jung Yu, Ruda Lee, Yong Il Park
{"title":"Recent Developments in Near-Infrared-II Luminescence Imaging Using Inorganic Nanoparticles: Semiconductor Quantum Dots and Lanthanide Nanoparticles","authors":"Jeong Geun Kim,&nbsp;Hyeon Jung Yu,&nbsp;Ruda Lee,&nbsp;Yong Il Park","doi":"10.1007/s11814-024-00300-4","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofluorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIR-I) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofluorescence. This facilitates high-sensitivity and high-resolution fluorescence imaging. The present review highlights inorganic nanoparticle-based imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifically, recent advancements in improving the luminescence efficiency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuli-responsive mechanisms for precise targeted imaging are discussed.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3603 - 3619"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00300-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence imaging finds extensive application in cellular and small animal studies due to its superior temporal and spatial resolution. However, fluorescence imaging using visible light faces limitations such as shallow tissue penetration, phototoxicity from excitation sources, and compromised detection sensitivity owing to background autofluorescence interference. To address these issues, researchers have explored longer wavelength light, particularly near-infrared-I (NIR-I) in the 700–900 nm range. Moreover, there is growing interest in exploiting NIR-II light, which spans the 1000–1700 nm range, to enhance the detection sensitivity, resolution, and tissue-penetration depth. In the NIR-II region, light scattering is minimized, thus enabling deeper tissue penetration of up to ~ 10 mm, along with reduced tissue autofluorescence. This facilitates high-sensitivity and high-resolution fluorescence imaging. The present review highlights inorganic nanoparticle-based imaging probes characterized by exceptional photostability and easily tunable emission wavelengths, including quantum dots and lanthanide nanoparticles. Specifically, recent advancements in improving the luminescence efficiency of NIR-II quantum dots and lanthanide nanoparticles, tuning the emission wavelengths to longer ranges, and designing stimuli-responsive mechanisms for precise targeted imaging are discussed.

利用无机纳米粒子进行近红外-II 发光成像的最新进展:半导体量子点和镧系元素纳米粒子
荧光成像因其卓越的时间和空间分辨率而在细胞和小动物研究中得到广泛应用。然而,使用可见光进行荧光成像面临着一些限制,如组织穿透力浅、激发光源的光毒性以及背景自发荧光干扰导致的检测灵敏度降低。为了解决这些问题,研究人员探索了更长波长的光,特别是 700-900 纳米范围内的近红外光(NIR-I)。此外,人们对利用波长范围在 1000-1700 纳米之间的近红外-II 光来提高检测灵敏度、分辨率和组织穿透深度的兴趣也与日俱增。在近红外-II 波段,光散射最小,因此组织穿透深度可达约 10 毫米,同时组织自发荧光减少。这有利于高灵敏度和高分辨率荧光成像。本综述重点介绍以无机纳米粒子为基础的成像探针,包括量子点和镧系纳米粒子,这些探针具有优异的光稳定性和易于调节的发射波长。具体而言,本综述讨论了在提高近红外-II 族量子点和镧系纳米粒子的发光效率、将发射波长调至更长范围以及设计刺激响应机制以实现精确定向成像方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信