{"title":"Enhancing the Sensitivity of a Temperature and Relative Humidity Sensor Utilizing Fe₂O₃-Coated Tapered Optical Fiber","authors":"Qichang Jiang;Su Sheng;Fulin Chen;Zinan Tu;Jian Wen;Chao Jiang","doi":"10.1109/JSEN.2024.3472070","DOIUrl":null,"url":null,"abstract":"This article presents the development and experimental verification of a temperature and humidity sensor featuring a stable structure and high sensitivity. The sensor utilizes a Mach-Zehnder interferometer (MZI) formed by coating a layer of Fe2O3 nanorods onto the surface of a tapered coreless fiber (NCF) via water bath method. The nanostructures formed on the NCF silver film exhibit remarkable stability and strength. Variations in external temperature and humidity alter the permeability of the Fe2O3 nanorods, leading to changes in their refractive index (RI) and a linear shift in the MZI’s resonance wavelength. Experimental findings reveal a temperature sensitivity of 0.454 nm/°C within the range of 25 °C–60 °C and a humidity sensitivity of 0.3332 nm/%RH within the range of 40%RH–70%RH. To enhance measurement sensitivity and accuracy, the MZI sensor is cascaded with a fiber Bragg grating (FBG) to mitigate cross-sensitivity between temperature and humidity.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36916-36922"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10709892/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the development and experimental verification of a temperature and humidity sensor featuring a stable structure and high sensitivity. The sensor utilizes a Mach-Zehnder interferometer (MZI) formed by coating a layer of Fe2O3 nanorods onto the surface of a tapered coreless fiber (NCF) via water bath method. The nanostructures formed on the NCF silver film exhibit remarkable stability and strength. Variations in external temperature and humidity alter the permeability of the Fe2O3 nanorods, leading to changes in their refractive index (RI) and a linear shift in the MZI’s resonance wavelength. Experimental findings reveal a temperature sensitivity of 0.454 nm/°C within the range of 25 °C–60 °C and a humidity sensitivity of 0.3332 nm/%RH within the range of 40%RH–70%RH. To enhance measurement sensitivity and accuracy, the MZI sensor is cascaded with a fiber Bragg grating (FBG) to mitigate cross-sensitivity between temperature and humidity.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice