Enhancing the Sensitivity of a Temperature and Relative Humidity Sensor Utilizing Fe₂O₃-Coated Tapered Optical Fiber

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qichang Jiang;Su Sheng;Fulin Chen;Zinan Tu;Jian Wen;Chao Jiang
{"title":"Enhancing the Sensitivity of a Temperature and Relative Humidity Sensor Utilizing Fe₂O₃-Coated Tapered Optical Fiber","authors":"Qichang Jiang;Su Sheng;Fulin Chen;Zinan Tu;Jian Wen;Chao Jiang","doi":"10.1109/JSEN.2024.3472070","DOIUrl":null,"url":null,"abstract":"This article presents the development and experimental verification of a temperature and humidity sensor featuring a stable structure and high sensitivity. The sensor utilizes a Mach-Zehnder interferometer (MZI) formed by coating a layer of Fe2O3 nanorods onto the surface of a tapered coreless fiber (NCF) via water bath method. The nanostructures formed on the NCF silver film exhibit remarkable stability and strength. Variations in external temperature and humidity alter the permeability of the Fe2O3 nanorods, leading to changes in their refractive index (RI) and a linear shift in the MZI’s resonance wavelength. Experimental findings reveal a temperature sensitivity of 0.454 nm/°C within the range of 25 °C–60 °C and a humidity sensitivity of 0.3332 nm/%RH within the range of 40%RH–70%RH. To enhance measurement sensitivity and accuracy, the MZI sensor is cascaded with a fiber Bragg grating (FBG) to mitigate cross-sensitivity between temperature and humidity.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36916-36922"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10709892/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the development and experimental verification of a temperature and humidity sensor featuring a stable structure and high sensitivity. The sensor utilizes a Mach-Zehnder interferometer (MZI) formed by coating a layer of Fe2O3 nanorods onto the surface of a tapered coreless fiber (NCF) via water bath method. The nanostructures formed on the NCF silver film exhibit remarkable stability and strength. Variations in external temperature and humidity alter the permeability of the Fe2O3 nanorods, leading to changes in their refractive index (RI) and a linear shift in the MZI’s resonance wavelength. Experimental findings reveal a temperature sensitivity of 0.454 nm/°C within the range of 25 °C–60 °C and a humidity sensitivity of 0.3332 nm/%RH within the range of 40%RH–70%RH. To enhance measurement sensitivity and accuracy, the MZI sensor is cascaded with a fiber Bragg grating (FBG) to mitigate cross-sensitivity between temperature and humidity.
利用铁₂O₃涂层锥形光纤提高温度和相对湿度传感器的灵敏度
本文介绍了一种结构稳定、灵敏度高的温湿度传感器的开发和实验验证。该传感器采用的马赫-泽恩德干涉仪(MZI)是通过水浴法在锥形无芯光纤(NCF)表面镀上一层 Fe2O3 纳米棒而形成的。在 NCF 银膜上形成的纳米结构具有出色的稳定性和强度。外部温度和湿度的变化会改变 Fe2O3 纳米棒的渗透性,从而导致其折射率(RI)的变化和 MZI 共振波长的线性移动。实验结果表明,在 25 °C-60 °C 范围内,温度灵敏度为 0.454 nm/°C;在 40%RH-70%RH 范围内,湿度灵敏度为 0.3332 nm/%RH。为了提高测量灵敏度和准确性,MZI 传感器与光纤布拉格光栅 (FBG) 级联,以减轻温度和湿度之间的交叉灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信