4-Bit Factorization Circuit Composed of Multiplier Units With Superconducting Flux Qubits Toward Quantum Annealing

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Daisuke Saida;Mutsuo Hidaka;Yuki Yamanashi
{"title":"4-Bit Factorization Circuit Composed of Multiplier Units With Superconducting Flux Qubits Toward Quantum Annealing","authors":"Daisuke Saida;Mutsuo Hidaka;Yuki Yamanashi","doi":"10.1109/TASC.2024.3486791","DOIUrl":null,"url":null,"abstract":"Prime factorization (\n<italic>P</i>\n = \n<italic>M</i>\n × \n<italic>N</i>\n) is considered to be a promising application in quantum computations. We perform 4-bit factorization in experiments using a superconducting flux qubit toward quantum annealing (QA). Our proposed method uses a superconducting quantum circuit implementing a multiplier Hamiltonian, which provides combinations of \n<italic>M</i>\n and \n<italic>N</i>\n as a factorization solution after QA when the integer \n<italic>P</i>\n is initially set. The circuit comprises multiple multiplier units (MUs) combined with connection qubits. The key points are a native implementation of the multiplier Hamiltonian to the superconducting quantum circuit and its fabrication using a Nb multilayer process with a Josephson junction dedicated to the qubit. The 4-bit factorization circuit comprises 32 superconducting flux qubits. Our method has superior scalability because the Hamiltonian is implemented with fewer qubits than in conventional methods using a chimera graph architecture. We perform experiments at 10 mK to clarify the validity of interconnections of a MU using qubits. We demonstrate experiments at 4.2 K and simulations for the factorization of integers four, six, and nine.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 1","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10736342/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Prime factorization ( P = M × N ) is considered to be a promising application in quantum computations. We perform 4-bit factorization in experiments using a superconducting flux qubit toward quantum annealing (QA). Our proposed method uses a superconducting quantum circuit implementing a multiplier Hamiltonian, which provides combinations of M and N as a factorization solution after QA when the integer P is initially set. The circuit comprises multiple multiplier units (MUs) combined with connection qubits. The key points are a native implementation of the multiplier Hamiltonian to the superconducting quantum circuit and its fabrication using a Nb multilayer process with a Josephson junction dedicated to the qubit. The 4-bit factorization circuit comprises 32 superconducting flux qubits. Our method has superior scalability because the Hamiltonian is implemented with fewer qubits than in conventional methods using a chimera graph architecture. We perform experiments at 10 mK to clarify the validity of interconnections of a MU using qubits. We demonstrate experiments at 4.2 K and simulations for the factorization of integers four, six, and nine.
由带有超导通量微微子的乘法器单元组成的 4 位因式分解电路实现量子退火
质数因式分解(P = M × N)被认为是量子计算中的一项前景广阔的应用。我们在实验中使用超导通量量子比特进行量子退火(QA),实现了 4 位因式分解。我们提出的方法使用一个超导量子电路来实现乘法器哈密顿,当整数 P 初始设定时,该电路在 QA 之后提供 M 和 N 的组合作为因式分解解。电路由多个乘法器单元(MU)和连接量子比特组成。其关键点在于将乘法器哈密顿原生实现到超导量子电路中,并采用铌多层工艺和量子比特专用约瑟夫森结进行制造。4 位因式分解电路由 32 个超导通量量子比特组成。与使用嵌合图架构的传统方法相比,我们的方法用更少的量子位实现了哈密顿,因此具有更优越的可扩展性。我们在 10 mK 下进行了实验,以澄清使用量子比特的 MU 相互连接的有效性。我们演示了在 4.2 K 条件下进行的实验,以及对整数四、六和九的因式分解进行的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信