Nested Pseudo Skeleton Approximation Algorithm for Generating ${\mathcal H}^{2}$-Matrix Representations of Electrically Large Surface Integral Equations

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chang Yang;Dan Jiao
{"title":"Nested Pseudo Skeleton Approximation Algorithm for Generating ${\\mathcal H}^{2}$-Matrix Representations of Electrically Large Surface Integral Equations","authors":"Chang Yang;Dan Jiao","doi":"10.1109/JMMCT.2024.3487779","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a kernel-independent and purely algebraic method, Nested Pseudo-Skeleton Approximation (NPSA) algorithm, to generate a low-rank \n<inline-formula><tex-math>${\\mathcal H}^{2}$</tex-math></inline-formula>\n-matrix representation of electrically large surface integral equations (SIEs). The algorithm only uses \n<inline-formula><tex-math>$O(NlogN)$</tex-math></inline-formula>\n entries of the original dense SIE matrix of size \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n to generate the \n<inline-formula><tex-math>${\\mathcal H}^{2}$</tex-math></inline-formula>\n-representation. It also provides a closed-form expression of the cluster bases and coupling matrices with respect to original matrix entries. The resultant \n<inline-formula><tex-math>${\\mathcal H}^{2}$</tex-math></inline-formula>\n-matrix is then directly solved for electrically large scattering analysis. Numerical experiments have demonstrated the accuracy and efficiency of the proposed algorithm. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"393-402"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737429/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a kernel-independent and purely algebraic method, Nested Pseudo-Skeleton Approximation (NPSA) algorithm, to generate a low-rank ${\mathcal H}^{2}$ -matrix representation of electrically large surface integral equations (SIEs). The algorithm only uses $O(NlogN)$ entries of the original dense SIE matrix of size $N$ to generate the ${\mathcal H}^{2}$ -representation. It also provides a closed-form expression of the cluster bases and coupling matrices with respect to original matrix entries. The resultant ${\mathcal H}^{2}$ -matrix is then directly solved for electrically large scattering analysis. Numerical experiments have demonstrated the accuracy and efficiency of the proposed algorithm. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.
生成电动大表面积分方程的 ${mathcal H}^{2}$ 矩阵表示的嵌套伪骨架逼近算法
本文开发了一种独立于内核的纯代数方法--嵌套伪骨架逼近算法(NPSA),用于生成电大曲面积分方程(SIE)的低秩${\mathcal H}^{2}$矩阵表示。该算法只需使用大小为 $N$ 的原始稠密 SIE 矩阵的 $O(NlogN)$ 条目即可生成 ${\mathcal H}^{2}$ 表示。它还提供了关于原始矩阵条目的簇基和耦合矩阵的闭式表达。由此得到的 ${mathcal H}^{2}$ 矩阵可以直接求解,用于电大散射分析。数值实验证明了所提算法的准确性和高效性。除了曲面积分方程,所提出的算法还可用于求解其他电大积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信