High-Sensitivity Dual-Band Microfluidic Microwave Sensor for Liquid Dielectric Characterization

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueyun Han;Ke Liu;Siyu Zhang
{"title":"High-Sensitivity Dual-Band Microfluidic Microwave Sensor for Liquid Dielectric Characterization","authors":"Xueyun Han;Ke Liu;Siyu Zhang","doi":"10.1109/JSEN.2024.3469529","DOIUrl":null,"url":null,"abstract":"The sensitivity and resolution are the crucial parameters for microwave (MW) microfluidic sensors in monitoring the concentration of binary liquid mixtures at low concentrations. This work proposes a miniaturized, reusable, high-sensitivity dual-frequency metamaterial microfluidic MW sensor with no-load resonance frequency points of 2.75 and 8.31 GHz for measuring the dielectric properties of liquid samples. The sensor comprises a microstrip transmission line (MTL) loaded with complementary split ring resonator (CSRR), which incorporates a bent groove structures to generate strong electric field (E-field) confinement within the CSRR. The polydimethylsiloxane (PDMS) microfluidic channels are designed based on the E-field distribution, allowing the loaded liquid samples to interact fully with the E-field. Given that the liquid sample’s complicated permittivity influences the magnitude of frequency shift and peak attenuation, a mathematical model is established according to the changes in \n<inline-formula> <tex-math>${S} _{{21}}$ </tex-math></inline-formula>\n for different concentrations of ethanol-aqueous solutions and is experimentally validated. The results indicate that using the variation in the difference between two resonant frequencies to obtain the liquid permittivity can eliminate environmental factors to a certain extent, accurately estimate the complex permittivity of the liquid, and thus achieve dual-band sensing of chemical dielectric properties. The average value of sensitivity and the size of the proposed sensor are 149.2 MHz/\n<inline-formula> <tex-math>$\\Delta \\varepsilon '$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$40\\times 30\\times 0.813$ </tex-math></inline-formula>\n mm3, respectively. This sensor provides beneficial support for dual-band sensing measurements of material dielectric characteristics.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36689-36697"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10704986/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The sensitivity and resolution are the crucial parameters for microwave (MW) microfluidic sensors in monitoring the concentration of binary liquid mixtures at low concentrations. This work proposes a miniaturized, reusable, high-sensitivity dual-frequency metamaterial microfluidic MW sensor with no-load resonance frequency points of 2.75 and 8.31 GHz for measuring the dielectric properties of liquid samples. The sensor comprises a microstrip transmission line (MTL) loaded with complementary split ring resonator (CSRR), which incorporates a bent groove structures to generate strong electric field (E-field) confinement within the CSRR. The polydimethylsiloxane (PDMS) microfluidic channels are designed based on the E-field distribution, allowing the loaded liquid samples to interact fully with the E-field. Given that the liquid sample’s complicated permittivity influences the magnitude of frequency shift and peak attenuation, a mathematical model is established according to the changes in ${S} _{{21}}$ for different concentrations of ethanol-aqueous solutions and is experimentally validated. The results indicate that using the variation in the difference between two resonant frequencies to obtain the liquid permittivity can eliminate environmental factors to a certain extent, accurately estimate the complex permittivity of the liquid, and thus achieve dual-band sensing of chemical dielectric properties. The average value of sensitivity and the size of the proposed sensor are 149.2 MHz/ $\Delta \varepsilon '$ and $40\times 30\times 0.813$ mm3, respectively. This sensor provides beneficial support for dual-band sensing measurements of material dielectric characteristics.
用于液体电介质表征的高灵敏度双波段微流控传感器
灵敏度和分辨率是微波(MW)微流体传感器监测低浓度二元液体混合物浓度的关键参数。本研究提出了一种微型、可重复使用、高灵敏度的双频超材料微流控微波传感器,其空载共振频率点分别为 2.75 和 8.31 GHz,用于测量液体样品的介电性质。该传感器由微带传输线(MTL)和互补分裂环谐振器(CSRR)组成,互补分裂环谐振器采用弯曲凹槽结构,可在 CSRR 内产生强电场(E-field)约束。聚二甲基硅氧烷(PDMS)微流体通道是根据电场分布设计的,可使装载的液体样品与电场充分互动。鉴于液体样品的复杂介电常数会影响频移和峰值衰减的大小,根据不同浓度乙醇水溶液中 ${S} _{{21}}$ 的变化建立了数学模型,并进行了实验验证。结果表明,利用两个共振频率之差的变化来获取液体的介电常数,可以在一定程度上消除环境因素的影响,准确估算液体的复介电常数,从而实现化学介电性质的双波段传感。该传感器的灵敏度平均值和体积分别为 149.2 MHz/ $\Delta \varepsilon '$ 和 $40/times 30/times 0.813$ mm3。该传感器为材料介电特性的双波段传感测量提供了有利支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信