{"title":"Power-consumption analysis for different IPoWDM network architectures with ZR/ZR+ and long-haul muxponders","authors":"Qiaolun Zhang;Annalisa Morea;Patricia Layec;Memedhe Ibrahimi;Francesco Musumeci;Massimo Tornatore","doi":"10.1364/JOCN.531536","DOIUrl":null,"url":null,"abstract":"Operators are constantly faced with the need to increase optical-network capacity to accommodate rapid traffic growth while minimizing the cost-per-bit and power-per-bit. The drastic reduction of the power consumption of IP routers and ZR/ZR+ pluggable transponders seen in the past several years has renewed the interest in “opaque” optical-network architectures, where no optical bypassing is allowed. In this work, we aim to quantify and compare the power consumption of four “IP over wavelength division multiplexing” (IPoWDM) transport network architectures employing ZR/ZR+ modules versus long-haul muxponders, considering different grooming, regeneration, and optical bypassing capabilities. We first propose a power consumption model for different IPoWDM node architectures with ZR/ZR+ modules and long-haul muxponders. Then, to obtain the power consumption of different architectures, we propose a compact auxiliary-graph-based network-design algorithm extensible to different network architectures. Moreover, we investigate how the continuous decrease in the power consumption of ZR/ZR+ and IP routers can impact the power consumption of different architectures through a sensitivity analysis. Illustrative numerical results on networks of different sizes show that, despite drastic reductions of power consumption at the IP layer, optical bypassing is still the most power-efficient solution, reducing consumption by up to 48%.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 12","pages":"1189-1203"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752822/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Operators are constantly faced with the need to increase optical-network capacity to accommodate rapid traffic growth while minimizing the cost-per-bit and power-per-bit. The drastic reduction of the power consumption of IP routers and ZR/ZR+ pluggable transponders seen in the past several years has renewed the interest in “opaque” optical-network architectures, where no optical bypassing is allowed. In this work, we aim to quantify and compare the power consumption of four “IP over wavelength division multiplexing” (IPoWDM) transport network architectures employing ZR/ZR+ modules versus long-haul muxponders, considering different grooming, regeneration, and optical bypassing capabilities. We first propose a power consumption model for different IPoWDM node architectures with ZR/ZR+ modules and long-haul muxponders. Then, to obtain the power consumption of different architectures, we propose a compact auxiliary-graph-based network-design algorithm extensible to different network architectures. Moreover, we investigate how the continuous decrease in the power consumption of ZR/ZR+ and IP routers can impact the power consumption of different architectures through a sensitivity analysis. Illustrative numerical results on networks of different sizes show that, despite drastic reductions of power consumption at the IP layer, optical bypassing is still the most power-efficient solution, reducing consumption by up to 48%.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.