Boshan Sun;Jijun Xiong;Yingping Hong;Wenping Zhang;Kun Bi;Miaomiao Zheng;Chen Li
{"title":"AC Bridge Pressure Sensor With Temperature Compensation for High Temperature and Pressure Composite Environment","authors":"Boshan Sun;Jijun Xiong;Yingping Hong;Wenping Zhang;Kun Bi;Miaomiao Zheng;Chen Li","doi":"10.1109/JSEN.2024.3475211","DOIUrl":null,"url":null,"abstract":"In this article, a high-temperature resistant ac bridge pressure sensor is designed for the application of high temperature and pressure combined environment. The temperature drift error compensation of the pressure sensor is realized by designing and arranging the structure of temperature-sensitive and pressure-sensitive capacitors connected with the bridge. In particular, the sensor alumina ceramic substrate is prepared by the lamination postsintering process of green tapes, and the silver paste is tightly integrated on the alumina ceramic surface by the inkjet printing postsintering process. Among them, the high-temperature and pressure-sensitive compact cavity is formed by the creative carbon film filling process before the multilayer green tapes lamination. Finally, three sets of high temperature and temperature-pressure composite test platforms were built and the comprehensive performance of the sensor was tested. The results show that the sensor can work at a high temperature of not less than \n<inline-formula> <tex-math>$700~^{\\circ }$ </tex-math></inline-formula>\nC and can complete the combined high temperature and high pressure test at a high temperature of \n<inline-formula> <tex-math>$23~^{\\circ }$ </tex-math></inline-formula>\nC–\n<inline-formula> <tex-math>$400~^{\\circ }$ </tex-math></inline-formula>\nC, in which the test error at \n<inline-formula> <tex-math>$400~^{\\circ }$ </tex-math></inline-formula>\nC is less than 3.3%.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36579-36586"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10715490/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a high-temperature resistant ac bridge pressure sensor is designed for the application of high temperature and pressure combined environment. The temperature drift error compensation of the pressure sensor is realized by designing and arranging the structure of temperature-sensitive and pressure-sensitive capacitors connected with the bridge. In particular, the sensor alumina ceramic substrate is prepared by the lamination postsintering process of green tapes, and the silver paste is tightly integrated on the alumina ceramic surface by the inkjet printing postsintering process. Among them, the high-temperature and pressure-sensitive compact cavity is formed by the creative carbon film filling process before the multilayer green tapes lamination. Finally, three sets of high temperature and temperature-pressure composite test platforms were built and the comprehensive performance of the sensor was tested. The results show that the sensor can work at a high temperature of not less than
$700~^{\circ }$
C and can complete the combined high temperature and high pressure test at a high temperature of
$23~^{\circ }$
C–
$400~^{\circ }$
C, in which the test error at
$400~^{\circ }$
C is less than 3.3%.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice