{"title":"Utilizing Inertial Measurement Units for Detecting Dynamic Stability Variations in a Multi-Condition Gait Experiment.","authors":"Yasuhirio Akiyama, Kyogo Kazumura, Shogo Okamoto, Yoji Yamada","doi":"10.3390/s24217044","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a wearable gait assessment method using inertial measurement units (IMUs) to evaluate gait ability in daily environments. By focusing on the estimation of the margin of stability (MoS), a key kinematic stability parameter, a method using a convolutional neural network, was developed to estimate the MoS from IMU acceleration time-series data. The relationship between MoS and other stability indices, such as the Lyapunov exponent and the multi-site time-series (MSTS) index, using data from five IMU sensors placed on various body parts was also examined. To simulate diverse gait conditions, treadmill speed was varied, and a knee-ankle-foot orthosis was used to restrict left knee extension, inducing gait asymmetry. The model achieved over 90% accuracy in classifying MoS in both forward and lateral directions using three-axis acceleration data from the IMUs. However, the correlation between MoS and the Lyapunov exponent or MSTS index was weak, suggesting that these indices may capture different aspects of gait stability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217044","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a wearable gait assessment method using inertial measurement units (IMUs) to evaluate gait ability in daily environments. By focusing on the estimation of the margin of stability (MoS), a key kinematic stability parameter, a method using a convolutional neural network, was developed to estimate the MoS from IMU acceleration time-series data. The relationship between MoS and other stability indices, such as the Lyapunov exponent and the multi-site time-series (MSTS) index, using data from five IMU sensors placed on various body parts was also examined. To simulate diverse gait conditions, treadmill speed was varied, and a knee-ankle-foot orthosis was used to restrict left knee extension, inducing gait asymmetry. The model achieved over 90% accuracy in classifying MoS in both forward and lateral directions using three-axis acceleration data from the IMUs. However, the correlation between MoS and the Lyapunov exponent or MSTS index was weak, suggesting that these indices may capture different aspects of gait stability.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.