The successive reduction of iodate to iodide driven by iron redox cycling.

Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-11-08 DOI:10.1016/j.jhazmat.2024.136436
Siqi Zhu, Zhou Jiang, Yongguang Jiang, Yiran Dong, Junxia Li, Liang Shi
{"title":"The successive reduction of iodate to iodide driven by iron redox cycling.","authors":"Siqi Zhu, Zhou Jiang, Yongguang Jiang, Yiran Dong, Junxia Li, Liang Shi","doi":"10.1016/j.jhazmat.2024.136436","DOIUrl":null,"url":null,"abstract":"<p><p>Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO<sub>3</sub><sup>-</sup>) reduction and iodide (I<sup>-</sup>) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO<sub>3</sub><sup>-</sup>, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O<sub>2</sub> to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO<sub>3</sub><sup>-</sup>. Chemical IO<sub>3</sub><sup>-</sup> reduction by biogenic Fe(II) was slower than enzymatic IO<sub>3</sub><sup>-</sup> reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I<sup>-</sup> and ROS. I<sup>-</sup> oxidation by ROS, however, did not lead to a significant production of IO<sub>3</sub><sup>-</sup> compared with I<sup>-</sup> formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO<sub>3</sub><sup>-</sup> to I<sup>-</sup>, which highlights vital roles of Fe(III)-reducing bacteria in I<sup>-</sup> formation and mobilization in environments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136436"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO3-) reduction and iodide (I-) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO3-, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O2 to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO3-. Chemical IO3- reduction by biogenic Fe(II) was slower than enzymatic IO3- reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I- and ROS. I- oxidation by ROS, however, did not lead to a significant production of IO3- compared with I- formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO3- to I-, which highlights vital roles of Fe(III)-reducing bacteria in I- formation and mobilization in environments.

在铁氧化还原循环的驱动下,碘酸根连续还原成碘化物。
微生物铁(III)还原产生的亚铁(Fe(II))和有氧铁(II)氧化产生的活性氧(ROS)可分别介导碘酸根(IO3-)还原和碘化物(I-)氧化。然而,氧化还原波动条件下的铁氧化还原循环如何驱动碘物种的转化仍不清楚。本研究选择了Shewanella oneidensis MR-1 野生型(WT)及其突变体△dmsEFAB(该突变体失去了酶还原IO3-的能力),在缺氧还原Fe(III)和O2再氧化Fe(II)的连续循环条件下进行亚铁/鹅卵石/非铁矿石培养实验,以揭示铁氧化还原循环在碘物种转化中的作用。结果表明,表面吸附的和矿物结构的 Fe(II) 都能化学还原 IO3-。生物源铁(II)化学还原 IO3- 的速度比 WT 酶还原 IO3- 的速度慢。与△dmsEFAB培养物相比,WT培养物在缺氧条件下都表现出较高的Fe(II)浓度,但在缺氧条件下累积的-OH较低,这意味着I-与ROS之间发生了化学反应。然而,与缺氧条件下形成的 I- 相比,ROS 氧化 I- 并未导致 IO3- 的大量产生。因此,铁氧化还原循环将 IO3- 连续还原为 I-,这凸显了铁(III)还原细菌在环境中 I-的形成和迁移过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信