An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation.

Linran Zhao, Yan Gong, Raymond G Stephany, Wei Shi, Wen Li, Yaoyao Jia
{"title":"An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation.","authors":"Linran Zhao, Yan Gong, Raymond G Stephany, Wei Shi, Wen Li, Yaoyao Jia","doi":"10.1109/TBCAS.2024.3495652","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an application-specific integrated circuit (ASIC) fabricated using the CMOS 180 nm process to perform simultaneous neural recording and optogenetic stimulation. To perform effective optogenetic stimulation, the ASIC features an advanced switched-capacitor-based stimulation (SCS) driver, called voltage-boosting SCS (VB-SCS). The VB-SCS can drive LED with large current pulses up to 8 mA while reducing the required supply voltage by half, facilitating wireless power reception. To prevent saturation from stimulation-induced artifacts, the ASIC integrates a direct digitizing recording frontend with a high-resolution delta-sigma (ΔΣ) analog-to-digital converter (ADC) that directly digitizes neural signals with a large input dynamic range. This ΔΣ ADC involves a Gm-C integrator followed by a noise-shaping (NS) successive approximation register (SAR) quantizer. Measurement results indicate that this ΔΣ ADC-based direct digitizing frontend can tolerate large artifacts up to 300 mV<sub>PP</sub> while linearly digitizing neural signals with an effective number of bits (ENOB) of 11.4 bits, consuming 10.8 μW. The ASIC, together with its associated passive components, was assembled into a headstage for in vivo verification, successfully demonstrating the functionality of the ASIC.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3495652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an application-specific integrated circuit (ASIC) fabricated using the CMOS 180 nm process to perform simultaneous neural recording and optogenetic stimulation. To perform effective optogenetic stimulation, the ASIC features an advanced switched-capacitor-based stimulation (SCS) driver, called voltage-boosting SCS (VB-SCS). The VB-SCS can drive LED with large current pulses up to 8 mA while reducing the required supply voltage by half, facilitating wireless power reception. To prevent saturation from stimulation-induced artifacts, the ASIC integrates a direct digitizing recording frontend with a high-resolution delta-sigma (ΔΣ) analog-to-digital converter (ADC) that directly digitizes neural signals with a large input dynamic range. This ΔΣ ADC involves a Gm-C integrator followed by a noise-shaping (NS) successive approximation register (SAR) quantizer. Measurement results indicate that this ΔΣ ADC-based direct digitizing frontend can tolerate large artifacts up to 300 mVPP while linearly digitizing neural signals with an effective number of bits (ENOB) of 11.4 bits, consuming 10.8 μW. The ASIC, together with its associated passive components, was assembled into a headstage for in vivo verification, successfully demonstrating the functionality of the ASIC.

用于同时进行神经记录和光遗传刺激的高能效、抗伪原创 ASIC。
本文介绍了一种采用 CMOS 180 纳米工艺制造的专用集成电路 (ASIC),可同时进行神经记录和光遗传刺激。为实现有效的光遗传刺激,ASIC 采用了先进的基于开关电容的刺激(SCS)驱动器,即电压增强型 SCS(VB-SCS)。VB-SCS 能以高达 8 mA 的大电流脉冲驱动 LED,同时将所需的电源电压降低一半,从而促进无线电源接收。为了防止刺激引起的假象造成饱和,ASIC 集成了一个直接数字化记录前端,带有一个高分辨率三角积分(ΔΣ)模数转换器 (ADC),可直接数字化输入动态范围大的神经信号。这种 ΔΣ ADC 包括一个 Gm-C 积分器和一个噪声整形(NS)逐次逼近寄存器(SAR)量化器。测量结果表明,这种基于 ΔΣ ADC 的直接数字化前端可容忍高达 300 mVPP 的大伪差,同时对神经信号进行线性数字化,有效位数 (ENOB) 为 11.4 位,功耗为 10.8 μW。ASIC 及其相关无源元件被组装到一个头台中进行体内验证,成功地展示了 ASIC 的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信