Hao Wang, Sisi Guo, Ruoyu Zhang, Jing Yao, Wen Tian, Jianfeng Wang
{"title":"Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification.","authors":"Hao Wang, Sisi Guo, Ruoyu Zhang, Jing Yao, Wen Tian, Jianfeng Wang","doi":"10.1002/jbio.202400220","DOIUrl":null,"url":null,"abstract":"<p><p>We aim to evaluate the feasibility of Raman spectroscopy for parathyroid gland (PG) identification during thyroidectomy. Using a novel side-viewing handheld Raman probe, a total of 324 Raman spectra of four tissue types (i.e., thyroid, lymph node, PG, and lipid) commonly encountered during thyroidectomy were rapidly (< 3 s) acquired from 80 tissue sites (thyroid [n = 10], lymph node [n = 10], PG [n = 40], lipid [n = 20]) of 10 euthanized Wistar rats. Two partial least-squares (PLS)-discriminant analysis (DA) detection models were developed, differentiating the lipid and nonlipid (i.e., thyroid, lymph node, and PG) tissues with an accuracy of 100%, and PG, lymph node, and thyroid could be detected with an accuracy of 98.4%, 93.9%, and 95.4% respectively. This work demonstrates the feasibility of Raman spectroscopy technique for PG identification and protection during thyroidectomy at the molecular level.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400220"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to evaluate the feasibility of Raman spectroscopy for parathyroid gland (PG) identification during thyroidectomy. Using a novel side-viewing handheld Raman probe, a total of 324 Raman spectra of four tissue types (i.e., thyroid, lymph node, PG, and lipid) commonly encountered during thyroidectomy were rapidly (< 3 s) acquired from 80 tissue sites (thyroid [n = 10], lymph node [n = 10], PG [n = 40], lipid [n = 20]) of 10 euthanized Wistar rats. Two partial least-squares (PLS)-discriminant analysis (DA) detection models were developed, differentiating the lipid and nonlipid (i.e., thyroid, lymph node, and PG) tissues with an accuracy of 100%, and PG, lymph node, and thyroid could be detected with an accuracy of 98.4%, 93.9%, and 95.4% respectively. This work demonstrates the feasibility of Raman spectroscopy technique for PG identification and protection during thyroidectomy at the molecular level.