Random Fourier features based nonlinear recurrent kernel normalized LMS algorithm with multiple feedbacks.

Ji Zhao, Jiaming Liu, Qiang Li, Lingli Tang, Hongbin Zhang
{"title":"Random Fourier features based nonlinear recurrent kernel normalized LMS algorithm with multiple feedbacks.","authors":"Ji Zhao, Jiaming Liu, Qiang Li, Lingli Tang, Hongbin Zhang","doi":"10.1016/j.isatra.2024.10.014","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of kernel adaptive filtering algorithms (KAFs) with nonlinear recurrent structures surpasses traditional KAFs, attributed to the nonlinear contribution of feedback. Nevertheless, the existing nonlinear recurrent KAFs primarily focus on a single feedback output, potentially limiting their latent filtering capabilities. In this paper, we introduce a novel alternative, named nonlinear recurrent kernel normalized least-mean-square with multiple feedbacks (NR-KNLMS-MF), which leverages the information from multiple feedback outputs. Additionally, to tackle the computational complexity challenges associated with KAFs, we integrate random Fourier features (RFF) into NR-KNLMS-MF, resulting in an efficient variant called as RFF-NR-KNLMS-MF. Furthermore, we conduct a theoretical analysis of the mean-square convergence for RFF-NR-KNLMS-MF. Simulation results on time-series predictions demonstrate the superiority of our proposed algorithms over other competing alternatives, validating their effectiveness.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of kernel adaptive filtering algorithms (KAFs) with nonlinear recurrent structures surpasses traditional KAFs, attributed to the nonlinear contribution of feedback. Nevertheless, the existing nonlinear recurrent KAFs primarily focus on a single feedback output, potentially limiting their latent filtering capabilities. In this paper, we introduce a novel alternative, named nonlinear recurrent kernel normalized least-mean-square with multiple feedbacks (NR-KNLMS-MF), which leverages the information from multiple feedback outputs. Additionally, to tackle the computational complexity challenges associated with KAFs, we integrate random Fourier features (RFF) into NR-KNLMS-MF, resulting in an efficient variant called as RFF-NR-KNLMS-MF. Furthermore, we conduct a theoretical analysis of the mean-square convergence for RFF-NR-KNLMS-MF. Simulation results on time-series predictions demonstrate the superiority of our proposed algorithms over other competing alternatives, validating their effectiveness.

基于随机傅立叶特征的非线性递归核归一化 LMS 算法与多重反馈。
具有非线性递归结构的核自适应滤波算法(KAF)的性能超过了传统的 KAF,这归功于反馈的非线性贡献。然而,现有的非线性递归 KAF 主要关注单一反馈输出,这可能会限制其潜在过滤能力。在本文中,我们引入了一种新的替代方案,名为具有多重反馈的非线性递归核归一化最小均方(NR-KNLMS-MF),它能充分利用来自多重反馈输出的信息。此外,为了解决与 KAF 相关的计算复杂性挑战,我们将随机傅里叶特征(RFF)整合到 NR-KNLMS-MF 中,从而产生了一种高效的变体,称为 RFF-NR-KNLMS-MF。此外,我们还对 RFF-NR-KNLMS-MF 的均方收敛性进行了理论分析。时间序列预测的仿真结果表明,我们提出的算法优于其他竞争方案,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信