Targeting mono- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa by the recombinant anticoagulant enzyme PAPC from micromycete Aspergillus ochraceus.
Aya Rafea Nasr, Sergei K Komarevtsev, Diana R Baidamshina, Ayan B Ryskulova, Dmitriy A Makarov, Vasiliy N Stepanenko, Elena Yu Trizna, Anna S Gorshkova, Alexander A Osmolovskiy, Konstantin A Miroshnikov, Airat R Kayumov
{"title":"Targeting mono- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa by the recombinant anticoagulant enzyme PAPC from micromycete Aspergillus ochraceus.","authors":"Aya Rafea Nasr, Sergei K Komarevtsev, Diana R Baidamshina, Ayan B Ryskulova, Dmitriy A Makarov, Vasiliy N Stepanenko, Elena Yu Trizna, Anna S Gorshkova, Alexander A Osmolovskiy, Konstantin A Miroshnikov, Airat R Kayumov","doi":"10.1016/j.biochi.2024.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial biofilms have recently emerged as a critical target for treating bacterial infections due to their crucial role in developing antibiotic resistance. The wide-spectrum activity of proteolytic enzymes makes them particularly suitable for disrupting biofilms formed by diverse bacterial species, including dual-species biofilms. In this study, we propose the Protease-Activator of Protein C (PAPC) of human blood plasma, an enzyme produced by the micromycete Aspergillus ochraceus, as a novel tool to degrade the protein scaffold of mono- or dual-species biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. The recombinant PAPC was successfully refolded after expression in E. coli BL21 (DE3) and demonstrated activity 100-fold higher compared to the native enzyme purified from the A. ochraceus culture liquid. The enzyme significantly destroyed mono- and dual-species biofilms formed by S. aureus and P. aeruginosa. In addition, PAPC significantly enhanced the antimicrobial treatment efficacy in both mono- and dual-species biofilms: in the presence of PAPC at 100 μg/ml, the effective concentration of the ciprofloxacin and ceftriaxone was reduced at least four-fold. Thus, the enzyme represents a reasonable solution to the complications resulting from biofilm formation and antibiotic resistance, especially wound and medical devices infections.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2024.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial biofilms have recently emerged as a critical target for treating bacterial infections due to their crucial role in developing antibiotic resistance. The wide-spectrum activity of proteolytic enzymes makes them particularly suitable for disrupting biofilms formed by diverse bacterial species, including dual-species biofilms. In this study, we propose the Protease-Activator of Protein C (PAPC) of human blood plasma, an enzyme produced by the micromycete Aspergillus ochraceus, as a novel tool to degrade the protein scaffold of mono- or dual-species biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. The recombinant PAPC was successfully refolded after expression in E. coli BL21 (DE3) and demonstrated activity 100-fold higher compared to the native enzyme purified from the A. ochraceus culture liquid. The enzyme significantly destroyed mono- and dual-species biofilms formed by S. aureus and P. aeruginosa. In addition, PAPC significantly enhanced the antimicrobial treatment efficacy in both mono- and dual-species biofilms: in the presence of PAPC at 100 μg/ml, the effective concentration of the ciprofloxacin and ceftriaxone was reduced at least four-fold. Thus, the enzyme represents a reasonable solution to the complications resulting from biofilm formation and antibiotic resistance, especially wound and medical devices infections.