Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.

Shaojie Chang, John C Benson, John I Lane, Michael R Bruesewitz, Joseph R Swicklik, Jamison E Thorne, Emily K Koons, Matthew L Carlson, Cynthia H McCollough, Shuai Leng
{"title":"Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.","authors":"Shaojie Chang, John C Benson, John I Lane, Michael R Bruesewitz, Joseph R Swicklik, Jamison E Thorne, Emily K Koons, Matthew L Carlson, Cynthia H McCollough, Shuai Leng","doi":"10.3174/ajnr.A8572","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating use of smoother reconstruction kernels that reduce resolution below the system's 0.110 mm maximum spatial resolution. To address this, a denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization.</p><p><strong>Materials and methods: </strong>With IRB approval, CNN was trained on 6 clinical temporal bone patient cases (1,885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha, Siemens). Images were reconstructed using iterative reconstruction at strength 3 (QIR3) with both clinical routine (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1. Three image series (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) for each case were randomized for review by two neuroradiologists, assessing overall quality and delineation of the modiolus, stapes footplate, and incudomallear joint.</p><p><strong>Results: </strong>CNN reduced noise by 80% compared to Hr96-QIR3 and 50% relative to Hr84-QIR3, while maintaining high resolution. When compared to the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 HU to 47.35 HU) and improved SSIM (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (p<0.001). Readers preferred Hr96-CNN for all three structures.</p><p><strong>Conclusions: </strong>The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomical visualization.<b>ABBREVIATIONS:</b> PCD = Photon-counting-detector; UHR = Ultra-high-resolution; IR = Iterative reconstruction; CNN = Convolutional neural network; SSIM: Structural similarity index.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating use of smoother reconstruction kernels that reduce resolution below the system's 0.110 mm maximum spatial resolution. To address this, a denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization.

Materials and methods: With IRB approval, CNN was trained on 6 clinical temporal bone patient cases (1,885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha, Siemens). Images were reconstructed using iterative reconstruction at strength 3 (QIR3) with both clinical routine (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1. Three image series (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) for each case were randomized for review by two neuroradiologists, assessing overall quality and delineation of the modiolus, stapes footplate, and incudomallear joint.

Results: CNN reduced noise by 80% compared to Hr96-QIR3 and 50% relative to Hr84-QIR3, while maintaining high resolution. When compared to the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 HU to 47.35 HU) and improved SSIM (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (p<0.001). Readers preferred Hr96-CNN for all three structures.

Conclusions: The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomical visualization.ABBREVIATIONS: PCD = Photon-counting-detector; UHR = Ultra-high-resolution; IR = Iterative reconstruction; CNN = Convolutional neural network; SSIM: Structural similarity index.

采用专用去噪卷积神经网络的超高分辨率光子计数探测器 CT,用于增强时态骨成像。
背景和目的:超高分辨率(UHR)光子计数探测器(PCD)CT 可提高图像分辨率,但会增加噪声,因此有必要使用更平滑的重建内核,以降低分辨率,使其低于系统的 0.110 毫米最大空间分辨率。为了解决这个问题,我们开发了一种去噪卷积神经网络(CNN),以减少使用现有最清晰重建内核重建的图像中的噪声,同时保持分辨率以增强颞骨的可视化:经 IRB 批准,使用双源 PCD-CT(NAEOTOM Alpha,西门子)对 6 例临床颞骨患者(1,885 幅图像)进行了 CNN 训练,并在 20 个独立病例上进行了测试。图像采用迭代重建强度 3 (QIR3)、临床常规 (Hr84) 和最清晰的可用头部内核 (Hr96) 进行重建。CNN 应用于使用 Hr96 和 QIR1 重建的图像。每个病例的三组图像(Hr84-QIR3、Hr96-QIR3 和 Hr96-CNN)由两名神经放射学专家随机审查,评估整体质量以及模小梁、镫骨脚板和耳内关节的轮廓:与 Hr96-QIR3 相比,CNN 减少了 80% 的噪音,与 Hr84-QIR3 相比,CNN 减少了 50% 的噪音,同时保持了高分辨率。与相同内核(Hr96-QIR3)的传统方法相比,Hr96-CNN 显著降低了图像噪声(从 204.63 HU 降至 47.35 HU),提高了 SSIM(从 0.72 升至 0.99)。Hr96-CNN 图像的整体质量高于 Hr84-QIR3 和 Hr96-QIR3(p 结论:Hr96-CNN 图像的整体质量高于 Hr84-QIR3 和 Hr96-QIR3:所提出的 CNN 能明显降低 UHR PCD-CT 中的图像噪声,使最清晰内核的使用成为可能。这一组合大大提高了诊断图像质量和解剖可视化效果:PCD = 光子计数探测器;UHR = 超高分辨率;IR = 迭代重建;CNN = 卷积神经网络;SSIM:结构相似性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信