Muhammad G. Saleh, Luke Bloy, Lisa Blaskey, Timothy P. L. Roberts
{"title":"GABA and glutamate measurements in temporal cortex of autistic children","authors":"Muhammad G. Saleh, Luke Bloy, Lisa Blaskey, Timothy P. L. Roberts","doi":"10.1002/aur.3253","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder and presents with challenges in social communication. A hypothesized underlying contributing mechanism is the imbalance in excitation and inhibition (E/I), partly influenced by the levels of excitatory neurotransmitter glutamate (Glu) and inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Although many have reported the levels of GABA and Glu in the brain, only a few reports address the temporal cortex and then only with a small sample of autistic children, and often only in one hemisphere. We used a macromolecular suppressed edited-magnetic resonance spectroscopy (MRS) sequence to study GABA and Glu (as potential key players influencing E/I) in a large sample of children with ASD in the right and left temporal cortices of children with (<i>N</i> = 56) and without (<i>N</i> = 30) ASD (7–18 years). As a group, children with ASD exhibited no differences in the left hemisphere (GABA and Glu Cohen's |d|: 0.24 and 0.03), but the right hemisphere showed higher GABA and lower Glu concentrations (GABA and Glu Cohen's |d|: 0.53 and 0.65) compared to neurotypicals. Furthermore, a negative association was found between the right hemisphere Glu levels of the ASD group and a clinical assessment tool (r = −0.361, <i>p</i> = 0.022), reflecting autism trait severity (social responsiveness scale). In conclusion, we highlight the chemical abnormalities in children with ASD through a cross-sectional measurement. Longitudinal studies are warranted to determine whether these chemical levels persist or resolve over development.</p>","PeriodicalId":131,"journal":{"name":"Autism Research","volume":"17 12","pages":"2558-2571"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autism Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aur.3253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder and presents with challenges in social communication. A hypothesized underlying contributing mechanism is the imbalance in excitation and inhibition (E/I), partly influenced by the levels of excitatory neurotransmitter glutamate (Glu) and inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Although many have reported the levels of GABA and Glu in the brain, only a few reports address the temporal cortex and then only with a small sample of autistic children, and often only in one hemisphere. We used a macromolecular suppressed edited-magnetic resonance spectroscopy (MRS) sequence to study GABA and Glu (as potential key players influencing E/I) in a large sample of children with ASD in the right and left temporal cortices of children with (N = 56) and without (N = 30) ASD (7–18 years). As a group, children with ASD exhibited no differences in the left hemisphere (GABA and Glu Cohen's |d|: 0.24 and 0.03), but the right hemisphere showed higher GABA and lower Glu concentrations (GABA and Glu Cohen's |d|: 0.53 and 0.65) compared to neurotypicals. Furthermore, a negative association was found between the right hemisphere Glu levels of the ASD group and a clinical assessment tool (r = −0.361, p = 0.022), reflecting autism trait severity (social responsiveness scale). In conclusion, we highlight the chemical abnormalities in children with ASD through a cross-sectional measurement. Longitudinal studies are warranted to determine whether these chemical levels persist or resolve over development.
期刊介绍:
AUTISM RESEARCH will cover the developmental disorders known as Pervasive Developmental Disorders (or autism spectrum disorders – ASDs). The Journal focuses on basic genetic, neurobiological and psychological mechanisms and how these influence developmental processes in ASDs.