Emerging roles of palmitoylation in pyroptosis.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Na Zhang, Yuanxin Yang, Daichao Xu
{"title":"Emerging roles of palmitoylation in pyroptosis.","authors":"Na Zhang, Yuanxin Yang, Daichao Xu","doi":"10.1016/j.tcb.2024.10.005","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis is a lytic, proinflammatory type of programmed cell death crucial for the immune response to pathogen infections and internal danger signals. Gasdermin D (GSDMD) acts as the pore-forming protein in pyroptosis following inflammasome activation. While recent research has improved our understanding of pyroptosis activation and execution, many aspects regarding the molecular mechanisms controlling inflammasome and GSDMD activation remain to be elucidated. A growing body of literature has shown that S-palmitoylation, a reversible post-translational modification (PTM) that attaches palmitate to cysteine residues, contributes to multi-layered regulation of pyroptosis. This review summarizes the emerging roles of S-palmitoylation in pyroptosis research with a focus on mechanisms that regulate NLRP3 inflammasome and GSDMD activation.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.10.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis is a lytic, proinflammatory type of programmed cell death crucial for the immune response to pathogen infections and internal danger signals. Gasdermin D (GSDMD) acts as the pore-forming protein in pyroptosis following inflammasome activation. While recent research has improved our understanding of pyroptosis activation and execution, many aspects regarding the molecular mechanisms controlling inflammasome and GSDMD activation remain to be elucidated. A growing body of literature has shown that S-palmitoylation, a reversible post-translational modification (PTM) that attaches palmitate to cysteine residues, contributes to multi-layered regulation of pyroptosis. This review summarizes the emerging roles of S-palmitoylation in pyroptosis research with a focus on mechanisms that regulate NLRP3 inflammasome and GSDMD activation.

棕榈酰化在高温变态反应中的新作用。
裂解是一种溶解性、促炎性的程序性细胞死亡,对病原体感染和内部危险信号的免疫反应至关重要。炎症小体激活后,Gasdermin D(GSDMD)在裂解过程中充当孔形成蛋白。尽管最近的研究增进了我们对热蛋白沉积激活和执行的了解,但控制炎症小体和 GSDMD 激活的分子机制的许多方面仍有待阐明。越来越多的文献表明,S-棕榈酰化是一种可逆的翻译后修饰(PTM),它将棕榈酸盐连接到半胱氨酸残基上,有助于对热蛋白变性进行多层调控。本综述总结了 S-棕榈酰化在热蛋白变性研究中新出现的作用,重点关注调控 NLRP3 炎症小体和 GSDMD 激活的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信