Effie Demos, Sofia Dimou, Claudio Scazzocchio, George Diallinas
{"title":"Screens for mutants defective in UapA trafficking highlight the importance of ER-exit as a primary control point in transporter biogenesis.","authors":"Effie Demos, Sofia Dimou, Claudio Scazzocchio, George Diallinas","doi":"10.1016/j.fgb.2024.103940","DOIUrl":null,"url":null,"abstract":"<p><p>Most transmembrane membrane proteins are thought to traffic to the plasma membrane (PM) via the conventional secretory pathway through sorting from the Golgi. However, our recent work has shown that in the filamentous fungus Aspergillus nidulans several nutrient transporters and other major membrane proteins traffic to the PM via Golgi-bypass and independently of known post-Golgi secretory mechanisms. Here in an effort to dissect the molecular mechanism underlying membrane cargo trafficking via Golgi-bypass we design and use unbiased genetic screens, based on the UapA uric acid-xanthine transporter, which allowed the isolation of mutants defective in UapA translocation to the plasma membrane. Analyses of these mutants highlight the importance of ER-exit as the primary control point in transporter trafficking via Golgi-bypass. Most mutants isolated concerned mutations within the uapA gene, albeit we also obtained uapA extragenetic mutants affecting secretion and growth pleiotropically or leading on apparent activation of an efflux transporter related to purine-detoxification. Our work paves the way to use genetic approaches targeting specifically trafficking mutations affecting Golgi-bypass.</p>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.fgb.2024.103940","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Most transmembrane membrane proteins are thought to traffic to the plasma membrane (PM) via the conventional secretory pathway through sorting from the Golgi. However, our recent work has shown that in the filamentous fungus Aspergillus nidulans several nutrient transporters and other major membrane proteins traffic to the PM via Golgi-bypass and independently of known post-Golgi secretory mechanisms. Here in an effort to dissect the molecular mechanism underlying membrane cargo trafficking via Golgi-bypass we design and use unbiased genetic screens, based on the UapA uric acid-xanthine transporter, which allowed the isolation of mutants defective in UapA translocation to the plasma membrane. Analyses of these mutants highlight the importance of ER-exit as the primary control point in transporter trafficking via Golgi-bypass. Most mutants isolated concerned mutations within the uapA gene, albeit we also obtained uapA extragenetic mutants affecting secretion and growth pleiotropically or leading on apparent activation of an efflux transporter related to purine-detoxification. Our work paves the way to use genetic approaches targeting specifically trafficking mutations affecting Golgi-bypass.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.