Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fangzhou Luo, Luwei Sui, Ying Sun, Zhixian Lai, Chengcheng Zhang, Gaoqun Zhang, Bing Bi, Shichao Yu, Li Hua Jin
{"title":"Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila.","authors":"Fangzhou Luo, Luwei Sui, Ying Sun, Zhixian Lai, Chengcheng Zhang, Gaoqun Zhang, Bing Bi, Shichao Yu, Li Hua Jin","doi":"10.1016/j.jgg.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and altered progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin was dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.11.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and altered progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin was dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.

果蝇体内的 Rab1 和 Syntaxin 17 通过β-整合素贩运调节造血稳态
造血对生物体的健康至关重要,果蝇因其与脊椎动物一致的调节机制而成为有效的遗传模型。在幼虫体内,造血主要发生在淋巴腺,淋巴腺包含不同的区域,包括皮质区、中间区、髓质区和后信号中心(PSC)。Rab1 对膜贩运和维持细胞粘附分子的定位至关重要,但它在造血稳态中的作用还不完全清楚。本研究调查了Rab1功能障碍对循环血细胞和淋巴腺细胞内β整合素贩运的影响。Rab1功能障碍会破坏β-整合素的内体贩运,导致其在细胞膜上的异常定位,从而分别促进循环血细胞和淋巴腺中的片状细胞分化和祖细胞动态变化。我们还发现,β-整合素的错误定位依赖于粘附蛋白DE-cadherin。PSC细胞中细胞边界β-整合素的减少导致PSC细胞数量减少和片状细胞分化。此外,Rab1通过Q-SNARE蛋白Syntaxin 17(Syx17)调节β-整合素的运输。我们的研究结果表明,Rab1和Syx17调控不同造血区室中β-整合素的不同运输途径,并维持果蝇的造血平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信